Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem6 Structured version   Visualization version   GIF version

Theorem sqrlem6 13922
 Description: Lemma for 01sqrex 13924. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem6
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . 4 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem5 13921 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
54simprd 479 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
6 vex 3189 . . . . . 6 𝑣 ∈ V
7 eqeq1 2625 . . . . . . 7 (𝑦 = 𝑣 → (𝑦 = (𝑎 · 𝑏) ↔ 𝑣 = (𝑎 · 𝑏)))
872rexbidv 3050 . . . . . 6 (𝑦 = 𝑣 → (∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏) ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏)))
96, 8, 3elab2 3337 . . . . 5 (𝑣𝑇 ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏))
10 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
1110breq1d 4623 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑎↑2) ≤ 𝐴))
1211, 1elrab2 3348 . . . . . . . . . . . . . 14 (𝑎𝑆 ↔ (𝑎 ∈ ℝ+ ∧ (𝑎↑2) ≤ 𝐴))
1312simplbi 476 . . . . . . . . . . . . 13 (𝑎𝑆𝑎 ∈ ℝ+)
14 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (𝑥↑2) = (𝑏↑2))
1514breq1d 4623 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑏↑2) ≤ 𝐴))
1615, 1elrab2 3348 . . . . . . . . . . . . . 14 (𝑏𝑆 ↔ (𝑏 ∈ ℝ+ ∧ (𝑏↑2) ≤ 𝐴))
1716simplbi 476 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 ∈ ℝ+)
18 rpre 11783 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
1918adantr 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
20 rpre 11783 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
2120adantl 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
22 rpgt0 11788 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+ → 0 < 𝑏)
2322adantl 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑏)
24 lemul1 10819 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2519, 21, 21, 23, 24syl112anc 1327 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2613, 17, 25syl2an 494 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2717rpcnd 11818 . . . . . . . . . . . . . . 15 (𝑏𝑆𝑏 ∈ ℂ)
2827sqvald 12945 . . . . . . . . . . . . . 14 (𝑏𝑆 → (𝑏↑2) = (𝑏 · 𝑏))
2928breq2d 4625 . . . . . . . . . . . . 13 (𝑏𝑆 → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3029adantl 482 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3126, 30bitr4d 271 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3231adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3316simprbi 480 . . . . . . . . . . . 12 (𝑏𝑆 → (𝑏↑2) ≤ 𝐴)
3433ad2antll 764 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ≤ 𝐴)
3513rpred 11816 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 ∈ ℝ)
3617rpred 11816 . . . . . . . . . . . . . 14 (𝑏𝑆𝑏 ∈ ℝ)
37 remulcl 9965 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
3835, 36, 37syl2an 494 . . . . . . . . . . . . 13 ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ∈ ℝ)
3938adantl 482 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ∈ ℝ)
4036resqcld 12975 . . . . . . . . . . . . 13 (𝑏𝑆 → (𝑏↑2) ∈ ℝ)
4140ad2antll 764 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ∈ ℝ)
42 rpre 11783 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
4342ad2antrr 761 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → 𝐴 ∈ ℝ)
44 letr 10075 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑏↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4539, 41, 43, 44syl3anc 1323 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4634, 45mpan2d 709 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑏↑2) → (𝑎 · 𝑏) ≤ 𝐴))
4732, 46sylbid 230 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 → (𝑎 · 𝑏) ≤ 𝐴))
48 rpgt0 11788 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+ → 0 < 𝑎)
4948adantr 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑎)
50 lemul2 10820 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5121, 19, 19, 49, 50syl112anc 1327 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5213, 17, 51syl2an 494 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5313rpcnd 11818 . . . . . . . . . . . . . . 15 (𝑎𝑆𝑎 ∈ ℂ)
5453sqvald 12945 . . . . . . . . . . . . . 14 (𝑎𝑆 → (𝑎↑2) = (𝑎 · 𝑎))
5554breq2d 4625 . . . . . . . . . . . . 13 (𝑎𝑆 → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5655adantr 481 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5752, 56bitr4d 271 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5857adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5912simprbi 480 . . . . . . . . . . . 12 (𝑎𝑆 → (𝑎↑2) ≤ 𝐴)
6059ad2antrl 763 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ≤ 𝐴)
6135resqcld 12975 . . . . . . . . . . . . 13 (𝑎𝑆 → (𝑎↑2) ∈ ℝ)
6261ad2antrl 763 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ∈ ℝ)
63 letr 10075 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑎↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6439, 62, 43, 63syl3anc 1323 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6560, 64mpan2d 709 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑎↑2) → (𝑎 · 𝑏) ≤ 𝐴))
6658, 65sylbid 230 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 → (𝑎 · 𝑏) ≤ 𝐴))
671, 2sqrlem3 13919 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑣𝑆 𝑣𝑦))
6867simp1d 1071 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝑆 ⊆ ℝ)
6968sseld 3582 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑎𝑆𝑎 ∈ ℝ))
7068sseld 3582 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑏𝑆𝑏 ∈ ℝ))
7169, 70anim12d 585 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
7271imp 445 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
73 letric 10081 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎𝑏𝑏𝑎))
7472, 73syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏𝑏𝑎))
7547, 66, 74mpjaod 396 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ≤ 𝐴)
7675ex 450 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ≤ 𝐴))
77 breq1 4616 . . . . . . . 8 (𝑣 = (𝑎 · 𝑏) → (𝑣𝐴 ↔ (𝑎 · 𝑏) ≤ 𝐴))
7877biimprcd 240 . . . . . . 7 ((𝑎 · 𝑏) ≤ 𝐴 → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
7976, 78syl6 35 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴)))
8079rexlimdvv 3030 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
819, 80syl5bi 232 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑣𝑇𝑣𝐴))
8281ralrimiv 2959 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑣𝑇 𝑣𝐴)
834simpld 475 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
8442adantr 481 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
85 suprleub 10933 . . . 4 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ 𝐴 ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8683, 84, 85syl2anc 692 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8782, 86mpbird 247 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑇, ℝ, < ) ≤ 𝐴)
885, 87eqbrtrd 4635 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  {cab 2607   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  {crab 2911   ⊆ wss 3555  ∅c0 3891   class class class wbr 4613  (class class class)co 6604  supcsup 8290  ℝcr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018   ≤ cle 10019  2c2 11014  ℝ+crp 11776  ↑cexp 12800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801 This theorem is referenced by:  sqrlem7  13923
 Copyright terms: Public domain W3C validator