MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqvali Structured version   Visualization version   GIF version

Theorem sqvali 12763
Description: Value of square. Inference version. (Contributed by NM, 1-Aug-1999.)
Hypothesis
Ref Expression
sqval.1 𝐴 ∈ ℂ
Assertion
Ref Expression
sqvali (𝐴↑2) = (𝐴 · 𝐴)

Proof of Theorem sqvali
StepHypRef Expression
1 sqval.1 . 2 𝐴 ∈ ℂ
2 sqval 12742 . 2 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
31, 2ax-mp 5 1 (𝐴↑2) = (𝐴 · 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1976  (class class class)co 6527  cc 9791   · cmul 9798  2c2 10920  cexp 12680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-n0 11143  df-z 11214  df-uz 11523  df-seq 12622  df-exp 12681
This theorem is referenced by:  sqrecii  12766  sqdivi  12768  sqge0i  12771  lt2sqi  12772  le2sqi  12773  sq11i  12774  sq2  12780  sq3  12781  sq4e2t8  12782  i2  12785  expnass  12790  binom2i  12794  sq10  12868  3dec  12870  sq10OLD  12871  3decOLD  12873  nn0le2msqi  12874  nn0opthlem1  12875  nn0opth2i  12878  faclbnd4lem1  12900  sqrtmsq2i  13924  sqr2irrlem  14765  pythagtriplem12  15318  pythagtriplem14  15320  prmlem1  15601  prmlem2  15614  4001prm  15639  mcubic  24319  dquartlem1  24323  quart1lem  24327  quart1  24328  log2ublem3  24420  birthday  24426  bposlem7  24760  bposlem8  24761  bposlem9  24762  ax5seglem7  25561  normlem1  27185  nmopcoadji  28178  quad3  30652  cntotbnd  32589  fmtno5lem4  39831  flsqrt5  39872  lighneallem4a  39888
  Copyright terms: Public domain W3C validator