MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srasca Structured version   Visualization version   GIF version

Theorem srasca 19100
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
srasca (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))

Proof of Theorem srasca
StepHypRef Expression
1 scaid 15935 . . . . 5 Scalar = Slot (Scalar‘ndx)
2 5re 11043 . . . . . . 7 5 ∈ ℝ
3 5lt6 11148 . . . . . . 7 5 < 6
42, 3ltneii 10094 . . . . . 6 5 ≠ 6
5 scandx 15934 . . . . . . 7 (Scalar‘ndx) = 5
6 vscandx 15936 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
75, 6neeq12i 2856 . . . . . 6 ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6)
84, 7mpbir 221 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
91, 8setsnid 15836 . . . 4 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
10 5lt8 11161 . . . . . . 7 5 < 8
112, 10ltneii 10094 . . . . . 6 5 ≠ 8
12 ipndx 15943 . . . . . . 7 (·𝑖‘ndx) = 8
135, 12neeq12i 2856 . . . . . 6 ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8)
1411, 13mpbir 221 . . . . 5 (Scalar‘ndx) ≠ (·𝑖‘ndx)
151, 14setsnid 15836 . . . 4 (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
169, 15eqtri 2643 . . 3 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
17 ovex 6632 . . . . 5 (𝑊s 𝑆) ∈ V
1817a1i 11 . . . 4 (𝜑 → (𝑊s 𝑆) ∈ V)
191setsid 15835 . . . 4 ((𝑊 ∈ V ∧ (𝑊s 𝑆) ∈ V) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
2018, 19sylan2 491 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
21 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2221adantl 482 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
23 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
24 sraval 19095 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2523, 24sylan2 491 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2622, 25eqtrd 2655 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2726fveq2d 6152 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2816, 20, 273eqtr4a 2681 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
291str0 15832 . . 3 ∅ = (Scalar‘∅)
30 reldmress 15847 . . . . 5 Rel dom ↾s
3130ovprc1 6637 . . . 4 𝑊 ∈ V → (𝑊s 𝑆) = ∅)
3231adantr 481 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = ∅)
33 fvprc 6142 . . . . . . 7 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
3433fveq1d 6150 . . . . . 6 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆))
35 0fv 6184 . . . . . 6 (∅‘𝑆) = ∅
3634, 35syl6eq 2671 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
3721, 36sylan9eqr 2677 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
3837fveq2d 6152 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅))
3929, 32, 383eqtr4a 2681 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
4028, 39pm2.61ian 830 1 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  wss 3555  c0 3891  cop 4154  cfv 5847  (class class class)co 6604  5c5 11017  6c6 11018  8c8 11020  ndxcnx 15778   sSet csts 15779  Basecbs 15781  s cress 15782  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  ·𝑖cip 15867  subringAlg csra 19087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-ndx 15784  df-slot 15785  df-sets 15787  df-ress 15788  df-sca 15878  df-vsca 15879  df-ip 15880  df-sra 19091
This theorem is referenced by:  sralmod  19106  rlmsca  19119  rlmsca2  19120  sraassa  19244  frlmip  20036  sranlm  22398  srabn  23064  rrxprds  23085
  Copyright terms: Public domain W3C validator