![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srg0cl | Structured version Visualization version GIF version |
Description: The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srg0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
srg0cl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
srg0cl | ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 18680 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
2 | srg0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srg0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | mndidcl 17480 | . 2 ⊢ (𝑅 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 ‘cfv 6037 Basecbs 16030 0gc0g 16273 Mndcmnd 17466 SRingcsrg 18676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-iota 6000 df-fun 6039 df-fv 6045 df-riota 6762 df-ov 6804 df-0g 16275 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-cmn 18366 df-srg 18677 |
This theorem is referenced by: srgisid 18699 srgen1zr 18701 srglmhm 18706 srgrmhm 18707 slmd0cl 30051 slmdvs0 30058 |
Copyright terms: Public domain | W3C validator |