MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srg1zr Structured version   Visualization version   GIF version

Theorem srg1zr 19208
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Hypotheses
Ref Expression
srg1zr.b 𝐵 = (Base‘𝑅)
srg1zr.p + = (+g𝑅)
srg1zr.t = (.r𝑅)
Assertion
Ref Expression
srg1zr (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))

Proof of Theorem srg1zr
StepHypRef Expression
1 pm4.24 564 . 2 (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍}))
2 srgmnd 19188 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
323ad2ant1 1125 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd)
43adantr 481 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mnd)
5 mndmgm 17906 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
64, 5syl 17 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mgm)
7 simpr 485 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑍𝐵)
8 simpl2 1184 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → + Fn (𝐵 × 𝐵))
9 srg1zr.b . . . . 5 𝐵 = (Base‘𝑅)
10 srg1zr.p . . . . 5 + = (+g𝑅)
119, 10mgmb1mgm1 17853 . . . 4 ((𝑅 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
126, 7, 8, 11syl3anc 1363 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
13 simpl1 1183 . . . . . 6 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ SRing)
14 eqid 2818 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1514srgmgp 19189 . . . . . 6 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
16 mndmgm 17906 . . . . . 6 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
1713, 15, 163syl 18 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (mulGrp‘𝑅) ∈ Mgm)
18 srg1zr.t . . . . . . . . . 10 = (.r𝑅)
1914, 18mgpplusg 19172 . . . . . . . . 9 = (+g‘(mulGrp‘𝑅))
2019fneq1i 6443 . . . . . . . 8 ( Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2120biimpi 217 . . . . . . 7 ( Fn (𝐵 × 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
22213ad2ant3 1127 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2322adantr 481 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2414, 9mgpbas 19174 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
25 eqid 2818 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
2624, 25mgmb1mgm1 17853 . . . . 5 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍𝐵 ∧ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2717, 7, 23, 26syl3anc 1363 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2819eqcomi 2827 . . . . . 6 (+g‘(mulGrp‘𝑅)) =
2928a1i 11 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) = )
3029eqeq1d 2820 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3127, 30bitrd 280 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3212, 31anbi12d 630 . 2 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
331, 32syl5bb 284 1 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {csn 4557  cop 4563   × cxp 5546   Fn wfn 6343  cfv 6348  Basecbs 16471  +gcplusg 16553  .rcmulr 16554  Mgmcmgm 17838  Mndcmnd 17899  mulGrpcmgp 19168  SRingcsrg 19184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-plusf 17839  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-cmn 18837  df-mgp 19169  df-srg 19185
This theorem is referenced by:  srgen1zr  19209  ring1zr  19976
  Copyright terms: Public domain W3C validator