MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgacl Structured version   Visualization version   GIF version

Theorem srgacl 18505
Description: Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgacl.b 𝐵 = (Base‘𝑅)
srgacl.p + = (+g𝑅)
Assertion
Ref Expression
srgacl ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem srgacl
StepHypRef Expression
1 srgmnd 18490 . 2 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
2 srgacl.b . . 3 𝐵 = (Base‘𝑅)
3 srgacl.p . . 3 + = (+g𝑅)
42, 3mndcl 17282 . 2 ((𝑅 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1357 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1481  wcel 1988  cfv 5876  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  Mndcmnd 17275  SRingcsrg 18486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-nul 4780
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-iota 5839  df-fv 5884  df-ov 6638  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-cmn 18176  df-srg 18487
This theorem is referenced by:  srglmhm  18516  srgrmhm  18517  sge0tsms  40360
  Copyright terms: Public domain W3C validator