MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgpcomp Structured version   Visualization version   GIF version

Theorem srgpcomp 19284
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
Assertion
Ref Expression
srgpcomp (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))

Proof of Theorem srgpcomp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgpcomp.k . 2 (𝜑𝐾 ∈ ℕ0)
2 oveq1 7165 . . . . . 6 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
32oveq1d 7173 . . . . 5 (𝑥 = 0 → ((𝑥 𝐵) × 𝐴) = ((0 𝐵) × 𝐴))
42oveq2d 7174 . . . . 5 (𝑥 = 0 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (0 𝐵)))
53, 4eqeq12d 2839 . . . 4 (𝑥 = 0 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵))))
65imbi2d 343 . . 3 (𝑥 = 0 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))))
7 oveq1 7165 . . . . . 6 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
87oveq1d 7173 . . . . 5 (𝑥 = 𝑦 → ((𝑥 𝐵) × 𝐴) = ((𝑦 𝐵) × 𝐴))
97oveq2d 7174 . . . . 5 (𝑥 = 𝑦 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝑦 𝐵)))
108, 9eqeq12d 2839 . . . 4 (𝑥 = 𝑦 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))))
1110imbi2d 343 . . 3 (𝑥 = 𝑦 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)))))
12 oveq1 7165 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
1312oveq1d 7173 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) × 𝐴) = (((𝑦 + 1) 𝐵) × 𝐴))
1412oveq2d 7174 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 × (𝑥 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
1513, 14eqeq12d 2839 . . . 4 (𝑥 = (𝑦 + 1) → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
1615imbi2d 343 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
17 oveq1 7165 . . . . . 6 (𝑥 = 𝐾 → (𝑥 𝐵) = (𝐾 𝐵))
1817oveq1d 7173 . . . . 5 (𝑥 = 𝐾 → ((𝑥 𝐵) × 𝐴) = ((𝐾 𝐵) × 𝐴))
1917oveq2d 7174 . . . . 5 (𝑥 = 𝐾 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝐾 𝐵)))
2018, 19eqeq12d 2839 . . . 4 (𝑥 = 𝐾 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
2120imbi2d 343 . . 3 (𝑥 = 𝐾 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))))
22 srgpcomp.b . . . . . 6 (𝜑𝐵𝑆)
23 srgpcomp.g . . . . . . . 8 𝐺 = (mulGrp‘𝑅)
24 srgpcomp.s . . . . . . . 8 𝑆 = (Base‘𝑅)
2523, 24mgpbas 19247 . . . . . . 7 𝑆 = (Base‘𝐺)
26 eqid 2823 . . . . . . . 8 (1r𝑅) = (1r𝑅)
2723, 26ringidval 19255 . . . . . . 7 (1r𝑅) = (0g𝐺)
28 srgpcomp.e . . . . . . 7 = (.g𝐺)
2925, 27, 28mulg0 18233 . . . . . 6 (𝐵𝑆 → (0 𝐵) = (1r𝑅))
3022, 29syl 17 . . . . 5 (𝜑 → (0 𝐵) = (1r𝑅))
3130oveq1d 7173 . . . 4 (𝜑 → ((0 𝐵) × 𝐴) = ((1r𝑅) × 𝐴))
32 srgpcomp.r . . . . . 6 (𝜑𝑅 ∈ SRing)
33 srgpcomp.a . . . . . 6 (𝜑𝐴𝑆)
34 srgpcomp.m . . . . . . 7 × = (.r𝑅)
3524, 34, 26srgridm 19274 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → (𝐴 × (1r𝑅)) = 𝐴)
3632, 33, 35syl2anc 586 . . . . 5 (𝜑 → (𝐴 × (1r𝑅)) = 𝐴)
3730oveq2d 7174 . . . . 5 (𝜑 → (𝐴 × (0 𝐵)) = (𝐴 × (1r𝑅)))
3824, 34, 26srglidm 19273 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → ((1r𝑅) × 𝐴) = 𝐴)
3932, 33, 38syl2anc 586 . . . . 5 (𝜑 → ((1r𝑅) × 𝐴) = 𝐴)
4036, 37, 393eqtr4rd 2869 . . . 4 (𝜑 → ((1r𝑅) × 𝐴) = (𝐴 × (0 𝐵)))
4131, 40eqtrd 2858 . . 3 (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))
4223srgmgp 19262 . . . . . . . . . . . . 13 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
4332, 42syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Mnd)
4443adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
45 simpr 487 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
4622adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐵𝑆)
4723, 34mgpplusg 19245 . . . . . . . . . . . 12 × = (+g𝐺)
4825, 28, 47mulgnn0p1 18241 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑆) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵))
4944, 45, 46, 48syl3anc 1367 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵))
5049oveq1d 7173 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐵) × 𝐴))
51 srgpcomp.c . . . . . . . . . . . . 13 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
5251eqcomd 2829 . . . . . . . . . . . 12 (𝜑 → (𝐵 × 𝐴) = (𝐴 × 𝐵))
5352adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝐵 × 𝐴) = (𝐴 × 𝐵))
5453oveq2d 7174 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × (𝐵 × 𝐴)) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
5532adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝑅 ∈ SRing)
5625, 28mulgnn0cl 18246 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑆) → (𝑦 𝐵) ∈ 𝑆)
5744, 45, 46, 56syl3anc 1367 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝑦 𝐵) ∈ 𝑆)
5833adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐴𝑆)
5924, 34srgass 19265 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐵𝑆𝐴𝑆)) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
6055, 57, 46, 58, 59syl13anc 1368 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
6124, 34srgass 19265 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐴𝑆𝐵𝑆)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
6255, 57, 58, 46, 61syl13anc 1368 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
6354, 60, 623eqtr4d 2868 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
6450, 63eqtrd 2858 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
6564adantr 483 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
66 oveq1 7165 . . . . . . . 8 (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝐴 × (𝑦 𝐵)) × 𝐵))
6724, 34srgass 19265 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆 ∧ (𝑦 𝐵) ∈ 𝑆𝐵𝑆)) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
6855, 58, 57, 46, 67syl13anc 1368 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
6949eqcomd 2829 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × 𝐵) = ((𝑦 + 1) 𝐵))
7069oveq2d 7174 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (𝐴 × ((𝑦 𝐵) × 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
7168, 70eqtrd 2858 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
7266, 71sylan9eqr 2880 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 𝐵) × 𝐴) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
7365, 72eqtrd 2858 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))
7473ex 415 . . . . 5 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
7574expcom 416 . . . 4 (𝑦 ∈ ℕ0 → (𝜑 → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
7675a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
776, 11, 16, 21, 41, 76nn0ind 12080 . 2 (𝐾 ∈ ℕ0 → (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
781, 77mpcom 38 1 (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  0cn0 11900  Basecbs 16485  .rcmulr 16568  Mndcmnd 17913  .gcmg 18226  mulGrpcmgp 19241  1rcur 19253  SRingcsrg 19257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mulg 18227  df-mgp 19242  df-ur 19254  df-srg 19258
This theorem is referenced by:  srgpcompp  19285  mplcoe5lem  20250
  Copyright terms: Public domain W3C validator