MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgpcompp Structured version   Visualization version   GIF version

Theorem srgpcompp 19277
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
srgpcompp (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))

Proof of Theorem srgpcompp
StepHypRef Expression
1 srgpcomp.r . . 3 (𝜑𝑅 ∈ SRing)
2 srgpcomp.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
32srgmgp 19254 . . . . 5 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
41, 3syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
5 srgpcompp.n . . . 4 (𝜑𝑁 ∈ ℕ0)
6 srgpcomp.a . . . 4 (𝜑𝐴𝑆)
7 srgpcomp.s . . . . . 6 𝑆 = (Base‘𝑅)
82, 7mgpbas 19239 . . . . 5 𝑆 = (Base‘𝐺)
9 srgpcomp.e . . . . 5 = (.g𝐺)
108, 9mulgnn0cl 18238 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴𝑆) → (𝑁 𝐴) ∈ 𝑆)
114, 5, 6, 10syl3anc 1367 . . 3 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
12 srgpcomp.k . . . 4 (𝜑𝐾 ∈ ℕ0)
13 srgpcomp.b . . . 4 (𝜑𝐵𝑆)
148, 9mulgnn0cl 18238 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0𝐵𝑆) → (𝐾 𝐵) ∈ 𝑆)
154, 12, 13, 14syl3anc 1367 . . 3 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
16 srgpcomp.m . . . 4 × = (.r𝑅)
177, 16srgass 19257 . . 3 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
181, 11, 15, 6, 17syl13anc 1368 . 2 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
19 srgpcomp.c . . . . 5 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
207, 16, 2, 9, 1, 6, 13, 12, 19srgpcomp 19276 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
2120oveq2d 7166 . . 3 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
227, 16srgass 19257 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆𝐴𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
231, 11, 6, 15, 22syl13anc 1368 . . 3 (𝜑 → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
2421, 23eqtr4d 2859 . 2 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)))
252, 16mgpplusg 19237 . . . . . 6 × = (+g𝐺)
268, 9, 25mulgnn0p1 18233 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴𝑆) → ((𝑁 + 1) 𝐴) = ((𝑁 𝐴) × 𝐴))
274, 5, 6, 26syl3anc 1367 . . . 4 (𝜑 → ((𝑁 + 1) 𝐴) = ((𝑁 𝐴) × 𝐴))
2827eqcomd 2827 . . 3 (𝜑 → ((𝑁 𝐴) × 𝐴) = ((𝑁 + 1) 𝐴))
2928oveq1d 7165 . 2 (𝜑 → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
3018, 24, 293eqtrd 2860 1 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6350  (class class class)co 7150  1c1 10532   + caddc 10534  0cn0 11891  Basecbs 16477  .rcmulr 16560  Mndcmnd 17905  .gcmg 18218  mulGrpcmgp 19233  SRingcsrg 19249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mulg 18219  df-mgp 19234  df-ur 19246  df-srg 19250
This theorem is referenced by:  srgpcomppsc  19278
  Copyright terms: Public domain W3C validator