![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgsummulcr | Structured version Visualization version GIF version |
Description: A finite semiring sum multiplied by a constant, analogous to gsummulc1 18806. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgsummulcr.b | ⊢ 𝐵 = (Base‘𝑅) |
srgsummulcr.z | ⊢ 0 = (0g‘𝑅) |
srgsummulcr.p | ⊢ + = (+g‘𝑅) |
srgsummulcr.t | ⊢ · = (.r‘𝑅) |
srgsummulcr.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgsummulcr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
srgsummulcr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
srgsummulcr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
srgsummulcr.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
Ref | Expression |
---|---|
srgsummulcr | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgsummulcr.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | srgsummulcr.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | srgsummulcr.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | srgcmn 18708 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | srgmnd 18709 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
8 | srgsummulcr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | srgsummulcr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | srgsummulcr.t | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 1, 10 | srgrmhm 18736 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
12 | 3, 9, 11 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
13 | srgsummulcr.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
14 | srgsummulcr.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
15 | oveq1 6820 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌)) | |
16 | oveq1 6820 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | |
17 | 1, 2, 5, 7, 8, 12, 13, 14, 15, 16 | gsummhm2 18539 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6813 finSupp cfsupp 8440 Basecbs 16059 +gcplusg 16143 .rcmulr 16144 0gc0g 16302 Σg cgsu 16303 Mndcmnd 17495 MndHom cmhm 17534 CMndccmn 18393 SRingcsrg 18705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-0g 16304 df-gsum 16305 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-cntz 17950 df-cmn 18395 df-mgp 18690 df-srg 18706 |
This theorem is referenced by: srgbinomlem3 18742 srgbinomlem4 18743 |
Copyright terms: Public domain | W3C validator |