Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubclem1 Structured version   Visualization version   GIF version

Theorem srhmsubclem1 41970
 Description: Lemma 1 for srhmsubc 41973. (Contributed by AV, 19-Feb-2020.)
Hypotheses
Ref Expression
srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = (𝑈𝑆)
Assertion
Ref Expression
srhmsubclem1 (𝑋𝐶𝑋 ∈ (𝑈 ∩ Ring))
Distinct variable groups:   𝑆,𝑟   𝑋,𝑟
Allowed substitution hints:   𝐶(𝑟)   𝑈(𝑟)

Proof of Theorem srhmsubclem1
StepHypRef Expression
1 eleq1 2580 . . . 4 (𝑟 = 𝑋 → (𝑟 ∈ Ring ↔ 𝑋 ∈ Ring))
2 srhmsubc.s . . . 4 𝑟𝑆 𝑟 ∈ Ring
31, 2vtoclri 3160 . . 3 (𝑋𝑆𝑋 ∈ Ring)
43anim2i 590 . 2 ((𝑋𝑈𝑋𝑆) → (𝑋𝑈𝑋 ∈ Ring))
5 srhmsubc.c . . 3 𝐶 = (𝑈𝑆)
65elin2 3666 . 2 (𝑋𝐶 ↔ (𝑋𝑈𝑋𝑆))
7 elin 3662 . 2 (𝑋 ∈ (𝑈 ∩ Ring) ↔ (𝑋𝑈𝑋 ∈ Ring))
84, 6, 73imtr4i 279 1 (𝑋𝐶𝑋 ∈ (𝑈 ∩ Ring))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1474   ∈ wcel 1938  ∀wral 2800   ∩ cin 3443  Ringcrg 18277 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494 This theorem depends on definitions:  df-bi 195  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-v 3079  df-in 3451 This theorem is referenced by:  srhmsubclem2  41971
 Copyright terms: Public domain W3C validator