Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  srngadd Structured version   Visualization version   GIF version

 Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srngcl.i = (*𝑟𝑅)
srngcl.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
srngadd ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) + ( 𝑌)))

StepHypRef Expression
1 eqid 2760 . . . . 5 (oppr𝑅) = (oppr𝑅)
2 eqid 2760 . . . . 5 (*rf𝑅) = (*rf𝑅)
31, 2srngrhm 19053 . . . 4 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
4 rhmghm 18927 . . . 4 ((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
53, 4syl 17 . . 3 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
6 srngcl.b . . . 4 𝐵 = (Base‘𝑅)
7 srngadd.p . . . 4 + = (+g𝑅)
81, 7oppradd 18830 . . . 4 + = (+g‘(oppr𝑅))
96, 7, 8ghmlin 17866 . . 3 (((*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)) ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)))
105, 9syl3an1 1167 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)))
11 srngring 19054 . . . 4 (𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
126, 7ringacl 18778 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
1311, 12syl3an1 1167 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
14 srngcl.i . . . 4 = (*𝑟𝑅)
156, 14, 2stafval 19050 . . 3 ((𝑋 + 𝑌) ∈ 𝐵 → ((*rf𝑅)‘(𝑋 + 𝑌)) = ( ‘(𝑋 + 𝑌)))
1613, 15syl 17 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = ( ‘(𝑋 + 𝑌)))
176, 14, 2stafval 19050 . . . 4 (𝑋𝐵 → ((*rf𝑅)‘𝑋) = ( 𝑋))
18173ad2ant2 1129 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑋) = ( 𝑋))
196, 14, 2stafval 19050 . . . 4 (𝑌𝐵 → ((*rf𝑅)‘𝑌) = ( 𝑌))
20193ad2ant3 1130 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑌) = ( 𝑌))
2118, 20oveq12d 6831 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)) = (( 𝑋) + ( 𝑌)))
2210, 16, 213eqtr3d 2802 1 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) + ( 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  *𝑟cstv 16145   GrpHom cghm 17858  Ringcrg 18747  opprcoppr 18822   RingHom crh 18914  *rfcstf 19045  *-Ringcsr 19046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-mulr 16157  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-ghm 17859  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-rnghom 18917  df-staf 19047  df-srng 19048 This theorem is referenced by:  ipdi  20187
 Copyright terms: Public domain W3C validator