![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srngadd | Structured version Visualization version GIF version |
Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
srngadd.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srngadd | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | eqid 2760 | . . . . 5 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
3 | 1, 2 | srngrhm 19053 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
4 | rhmghm 18927 | . . . 4 ⊢ ((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) |
6 | srngcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
7 | srngadd.p | . . . 4 ⊢ + = (+g‘𝑅) | |
8 | 1, 7 | oppradd 18830 | . . . 4 ⊢ + = (+g‘(oppr‘𝑅)) |
9 | 6, 7, 8 | ghmlin 17866 | . . 3 ⊢ (((*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
10 | 5, 9 | syl3an1 1167 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
11 | srngring 19054 | . . . 4 ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | |
12 | 6, 7 | ringacl 18778 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
13 | 11, 12 | syl3an1 1167 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
14 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
15 | 6, 14, 2 | stafval 19050 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ 𝐵 → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
16 | 13, 15 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
17 | 6, 14, 2 | stafval 19050 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
18 | 17 | 3ad2ant2 1129 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
19 | 6, 14, 2 | stafval 19050 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
20 | 19 | 3ad2ant3 1130 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
21 | 18, 20 | oveq12d 6831 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
22 | 10, 16, 21 | 3eqtr3d 2802 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 *𝑟cstv 16145 GrpHom cghm 17858 Ringcrg 18747 opprcoppr 18822 RingHom crh 18914 *rfcstf 19045 *-Ringcsr 19046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-mulr 16157 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-grp 17626 df-ghm 17859 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-rnghom 18917 df-staf 19047 df-srng 19048 |
This theorem is referenced by: ipdi 20187 |
Copyright terms: Public domain | W3C validator |