MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srngadd Structured version   Visualization version   GIF version

Theorem srngadd 18778
Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srngcl.i = (*𝑟𝑅)
srngcl.b 𝐵 = (Base‘𝑅)
srngadd.p + = (+g𝑅)
Assertion
Ref Expression
srngadd ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) + ( 𝑌)))

Proof of Theorem srngadd
StepHypRef Expression
1 eqid 2621 . . . . 5 (oppr𝑅) = (oppr𝑅)
2 eqid 2621 . . . . 5 (*rf𝑅) = (*rf𝑅)
31, 2srngrhm 18772 . . . 4 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
4 rhmghm 18646 . . . 4 ((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
53, 4syl 17 . . 3 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
6 srngcl.b . . . 4 𝐵 = (Base‘𝑅)
7 srngadd.p . . . 4 + = (+g𝑅)
81, 7oppradd 18551 . . . 4 + = (+g‘(oppr𝑅))
96, 7, 8ghmlin 17586 . . 3 (((*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)) ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)))
105, 9syl3an1 1356 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)))
11 srngring 18773 . . . 4 (𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
126, 7ringacl 18499 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
1311, 12syl3an1 1356 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
14 srngcl.i . . . 4 = (*𝑟𝑅)
156, 14, 2stafval 18769 . . 3 ((𝑋 + 𝑌) ∈ 𝐵 → ((*rf𝑅)‘(𝑋 + 𝑌)) = ( ‘(𝑋 + 𝑌)))
1613, 15syl 17 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = ( ‘(𝑋 + 𝑌)))
176, 14, 2stafval 18769 . . . 4 (𝑋𝐵 → ((*rf𝑅)‘𝑋) = ( 𝑋))
18173ad2ant2 1081 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑋) = ( 𝑋))
196, 14, 2stafval 18769 . . . 4 (𝑌𝐵 → ((*rf𝑅)‘𝑌) = ( 𝑌))
20193ad2ant3 1082 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑌) = ( 𝑌))
2118, 20oveq12d 6622 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)) = (( 𝑋) + ( 𝑌)))
2210, 16, 213eqtr3d 2663 1 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) + ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  *𝑟cstv 15864   GrpHom cghm 17578  Ringcrg 18468  opprcoppr 18543   RingHom crh 18633  *rfcstf 18764  *-Ringcsr 18765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-ghm 17579  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-rnghom 18636  df-staf 18766  df-srng 18767
This theorem is referenced by:  ipdi  19904
  Copyright terms: Public domain W3C validator