MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscmp Structured version   Visualization version   GIF version

Theorem sscmp 22016
Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
sscmp.1 𝑋 = 𝐾
Assertion
Ref Expression
sscmp ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)

Proof of Theorem sscmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 21524 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1129 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Top)
3 elpwi 4551 . . . 4 (𝑥 ∈ 𝒫 𝐽𝑥𝐽)
4 simpl2 1188 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐾 ∈ Comp)
5 simprl 769 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐽)
6 simpl3 1189 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽𝐾)
75, 6sstrd 3980 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐾)
8 simpl1 1187 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
9 toponuni 21525 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
108, 9syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝐽)
11 simprr 771 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 = 𝑥)
1210, 11eqtrd 2859 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝑥)
13 sscmp.1 . . . . . . . 8 𝑋 = 𝐾
1413cmpcov 22000 . . . . . . 7 ((𝐾 ∈ Comp ∧ 𝑥𝐾𝑋 = 𝑥) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
154, 7, 12, 14syl3anc 1367 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
1610eqeq1d 2826 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (𝑋 = 𝑦 𝐽 = 𝑦))
1716rexbidv 3300 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
1815, 17mpbid 234 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)
1918expr 459 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
203, 19sylan2 594 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
2120ralrimiva 3185 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
22 eqid 2824 . . 3 𝐽 = 𝐽
2322iscmp 21999 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)))
242, 21, 23sylanbrc 585 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  cin 3938  wss 3939  𝒫 cpw 4542   cuni 4841  cfv 6358  Fincfn 8512  Topctop 21504  TopOnctopon 21521  Compccmp 21997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-topon 21522  df-cmp 21998
This theorem is referenced by:  kgencmp2  22157  kgen2ss  22166
  Copyright terms: Public domain W3C validator