MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscntz Structured version   Visualization version   GIF version

Theorem sscntz 18458
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
sscntz ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵   𝑥,𝑀,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem sscntz
StepHypRef Expression
1 cntzfval.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . . 5 + = (+g𝑀)
3 cntzfval.z . . . . 5 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 18453 . . . 4 (𝑇𝐵 → (𝑍𝑇) = {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
54sseq2d 4001 . . 3 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
6 ssrab 4051 . . 3 (𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
75, 6syl6bb 289 . 2 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
8 ibar 531 . . 3 (𝑆𝐵 → (∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
98bicomd 225 . 2 (𝑆𝐵 → ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
107, 9sylan9bbr 513 1 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wral 3140  {crab 3144  wss 3938  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Cntzccntz 18447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-cntz 18449
This theorem is referenced by:  cntz2ss  18465  cntzrec  18466  submcmn2  18961  mplcoe5lem  20250  symgcntz  30731
  Copyright terms: Public domain W3C validator