MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscon Structured version   Visualization version   GIF version

Theorem sscon 3722
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
sscon (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3577 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21con3d 148 . . . 4 (𝐴𝐵 → (¬ 𝑥𝐵 → ¬ 𝑥𝐴))
32anim2d 588 . . 3 (𝐴𝐵 → ((𝑥𝐶 ∧ ¬ 𝑥𝐵) → (𝑥𝐶 ∧ ¬ 𝑥𝐴)))
4 eldif 3565 . . 3 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
5 eldif 3565 . . 3 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
63, 4, 53imtr4g 285 . 2 (𝐴𝐵 → (𝑥 ∈ (𝐶𝐵) → 𝑥 ∈ (𝐶𝐴)))
76ssrdv 3589 1 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1987  cdif 3552  wss 3555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-dif 3558  df-in 3562  df-ss 3569
This theorem is referenced by:  sscond  3725  complss  3729  sorpsscmpl  6901  sbthlem1  8014  sbthlem2  8015  cantnfp1lem1  8519  cantnfp1lem3  8521  isf34lem7  9145  isf34lem6  9146  setsres  15822  mplsubglem  19353  cctop  20720  clsval2  20764  ntrss  20769  hauscmplem  21119  ptbasin  21290  cfinfil  21607  csdfil  21608  uniioombllem5  23261  kur14lem6  30901  bj-2upln1upl  32659  dvasin  33128  sscon34b  37799  clsk3nimkb  37820  fourierdlem62  39692  caragendifcl  40035
  Copyright terms: Public domain W3C validator