Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdec Structured version   Visualization version   GIF version

Theorem ssdec 41347
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssdec.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssdec.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
Assertion
Ref Expression
ssdec (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssdec
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssdec.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12242 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 12247 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 514 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 12250 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 12081 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 11200 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1124 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 514 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 fveq2 6665 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1413sseq1d 3998 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1514imbi2d 343 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
16 fveq2 6665 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716sseq1d 3998 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑚) ⊆ (𝐹𝑀)))
1817imbi2d 343 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))))
19 fveq2 6665 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2019sseq1d 3998 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀)))
2120imbi2d 343 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
22 fveq2 6665 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2322sseq1d 3998 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑁) ⊆ (𝐹𝑀)))
2423imbi2d 343 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))))
25 ssidd 3990 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2625a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
27 simpr 487 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
28 simplll 773 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
29 simplr1 1211 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
30 simplr2 1212 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3128, 29, 303jca 1124 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
32 eluz2 12243 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3331, 32sylibr 236 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
34 simpllr 774 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
35 simplr3 1213 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
3633, 34, 353jca 1124 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
37 elfzo2 13035 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
3836, 37sylibr 236 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
39 ssdec.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
4027, 38, 39syl2anc 586 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
41403adant2 1127 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
42 simpr 487 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → 𝜑)
43 simpl 485 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)))
44 pm3.35 801 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))) → (𝐹𝑚) ⊆ (𝐹𝑀))
4542, 43, 44syl2anc 586 . . . . . 6 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
46453adant1 1126 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
4741, 46sstrd 3977 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))
48473exp 1115 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) → (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
4915, 18, 21, 24, 26, 48fzind 12074 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀)))
5012, 49mpcom 38 1 (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wss 3936   class class class wbr 5059  cfv 6350  (class class class)co 7150  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cz 11975  cuz 12237  ..^cfzo 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028
This theorem is referenced by:  meaiininclem  42761
  Copyright terms: Public domain W3C validator