MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdisj Structured version   Visualization version   GIF version

Theorem ssdisj 4409
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
ssdisj ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)

Proof of Theorem ssdisj
StepHypRef Expression
1 ssrin 4210 . . 3 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 eqimss 4023 . . 3 ((𝐵𝐶) = ∅ → (𝐵𝐶) ⊆ ∅)
31, 2sylan9ss 3980 . 2 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) ⊆ ∅)
4 ss0 4352 . 2 ((𝐴𝐶) ⊆ ∅ → (𝐴𝐶) = ∅)
53, 4syl 17 1 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  cin 3935  wss 3936  c0 4291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3497  df-dif 3939  df-in 3943  df-ss 3952  df-nul 4292
This theorem is referenced by:  djudisj  6019  fimacnvdisj  6552  marypha1lem  8891  djuin  9341  ackbij1lem16  9651  ackbij1lem18  9653  fin23lem20  9753  fin23lem30  9758  elcls3  21685  neindisj  21719  imadifxp  30345  ldgenpisyslem1  31417  chtvalz  31895  pthhashvtx  32369  diophren  39403
  Copyright terms: Public domain W3C validator