Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqfv1 Structured version   Visualization version   GIF version

Theorem sseqfv1 30579
Description: Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
sseqfv1.4 (𝜑𝑁 ∈ (0..^(#‘𝑀)))
Assertion
Ref Expression
sseqfv1 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀𝑁))

Proof of Theorem sseqfv1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.1 . . . 4 (𝜑𝑆 ∈ V)
2 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
3 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (# “ (ℤ‘(#‘𝑀))))
4 sseqval.4 . . . 4 (𝜑𝐹:𝑊𝑆)
51, 2, 3, 4sseqval 30578 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
65fveq1d 6231 . 2 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ((𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁))
7 wrdfn 13351 . . . 4 (𝑀 ∈ Word 𝑆𝑀 Fn (0..^(#‘𝑀)))
82, 7syl 17 . . 3 (𝜑𝑀 Fn (0..^(#‘𝑀)))
9 fvex 6239 . . . . . 6 (𝑥‘((#‘𝑥) − 1)) ∈ V
10 df-lsw 13332 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((#‘𝑥) − 1)))
119, 10fnmpti 6060 . . . . 5 lastS Fn V
1211a1i 11 . . . 4 (𝜑 → lastS Fn V)
13 lencl 13356 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (#‘𝑀) ∈ ℕ0)
142, 13syl 17 . . . . . 6 (𝜑 → (#‘𝑀) ∈ ℕ0)
1514nn0zd 11518 . . . . 5 (𝜑 → (#‘𝑀) ∈ ℤ)
16 seqfn 12853 . . . . 5 ((#‘𝑀) ∈ ℤ → seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(#‘𝑀)))
1715, 16syl 17 . . . 4 (𝜑 → seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(#‘𝑀)))
18 ssv 3658 . . . . 5 ran seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V
1918a1i 11 . . . 4 (𝜑 → ran seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V)
20 fnco 6037 . . . 4 (( lastS Fn V ∧ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(#‘𝑀)) ∧ ran seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V) → ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(#‘𝑀)))
2112, 17, 19, 20syl3anc 1366 . . 3 (𝜑 → ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(#‘𝑀)))
22 fzouzdisj 12543 . . . 4 ((0..^(#‘𝑀)) ∩ (ℤ‘(#‘𝑀))) = ∅
2322a1i 11 . . 3 (𝜑 → ((0..^(#‘𝑀)) ∩ (ℤ‘(#‘𝑀))) = ∅)
24 sseqfv1.4 . . 3 (𝜑𝑁 ∈ (0..^(#‘𝑀)))
25 fvun1 6308 . . 3 ((𝑀 Fn (0..^(#‘𝑀)) ∧ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(#‘𝑀)) ∧ (((0..^(#‘𝑀)) ∩ (ℤ‘(#‘𝑀))) = ∅ ∧ 𝑁 ∈ (0..^(#‘𝑀)))) → ((𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁) = (𝑀𝑁))
268, 21, 23, 24, 25syl112anc 1370 . 2 (𝜑 → ((𝑀 ∪ ( lastS ∘ seq(#‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁) = (𝑀𝑁))
276, 26eqtrd 2685 1 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210   × cxp 5141  ccnv 5142  ran crn 5144  cima 5146  ccom 5147   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  0cc0 9974  1c1 9975  cmin 10304  0cn0 11330  cz 11415  cuz 11725  ..^cfzo 12504  seqcseq 12841  #chash 13157  Word cword 13323   lastS clsw 13324   ++ cconcat 13325  ⟨“cs1 13326  seqstrcsseq 30573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-word 13331  df-lsw 13332  df-s1 13334  df-sseq 30574
This theorem is referenced by:  sseqfres  30583  fib0  30589  fib1  30590
  Copyright terms: Public domain W3C validator