Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseqin2OLD Structured version   Visualization version   GIF version

Theorem sseqin2OLD 3830
 Description: Obsolete proof of sseqin2 3815 as of 22-Jul-2021. (Contributed by NM, 17-May-1994.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sseqin2OLD (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)

Proof of Theorem sseqin2OLD
StepHypRef Expression
1 sseqin2 3815 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1482   ∩ cin 3571   ⊆ wss 3572 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-v 3200  df-in 3579  df-ss 3586 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator