Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssfz12 Structured version   Visualization version   GIF version

Theorem ssfz12 40283
Description: Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfz12 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfz12
StepHypRef Expression
1 eluz 11437 . . . 4 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ (ℤ𝐾) ↔ 𝐾𝐿))
21biimp3ar 1424 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (ℤ𝐾))
3 eluzfz1 12084 . . 3 (𝐿 ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...𝐿))
42, 3syl 17 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐾 ∈ (𝐾...𝐿))
5 eluzfz2 12085 . . . 4 (𝐿 ∈ (ℤ𝐾) → 𝐿 ∈ (𝐾...𝐿))
62, 5syl 17 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (𝐾...𝐿))
7 ssel2 3467 . . . . . . . 8 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → 𝐾 ∈ (𝑀...𝑁))
8 ssel2 3467 . . . . . . . . . . 11 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → 𝐿 ∈ (𝑀...𝑁))
9 elfzuz3 12075 . . . . . . . . . . 11 (𝐿 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐿))
10 elfzuz 12074 . . . . . . . . . . . . 13 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
11 eluz2 11429 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
12 eluz2 11429 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
13 pm3.21 462 . . . . . . . . . . . . . . . . . . 19 (𝐿𝑁 → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
14133ad2ant3 1076 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1512, 14sylbi 205 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1615a1i 11 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁))))
1716com13 85 . . . . . . . . . . . . . . 15 (𝑀𝐾 → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
18173ad2ant3 1076 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
1911, 18sylbi 205 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
2010, 19syl 17 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
2120com12 32 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
228, 9, 213syl 18 . . . . . . . . . 10 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
2322ex 448 . . . . . . . . 9 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁)))))
2423com4t 90 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
257, 24syl 17 . . . . . . 7 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2625ex 448 . . . . . 6 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2726com24 92 . . . . 5 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2827pm2.43i 49 . . . 4 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2928com14 93 . . 3 (𝐿 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))))
306, 29mpcom 37 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁))))
314, 30mpd 15 1 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030  wcel 1938  wss 3444   class class class wbr 4481  cfv 5689  (class class class)co 6425  cle 9828  cz 11116  cuz 11423  ...cfz 12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-pre-lttri 9763
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-1st 6932  df-2nd 6933  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-neg 10018  df-z 11117  df-uz 11424  df-fz 12063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator