MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzo12bi Structured version   Visualization version   GIF version

Theorem ssfzo12bi 12603
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12bi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-3an 1056 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) ↔ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿))
21biimpri 218 . . . 4 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
323adant2 1100 . . 3 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
4 ssfzo12 12601 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
53, 4syl 17 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
6 elfzo2 12512 . . . . . 6 (𝑥 ∈ (𝐾..^𝐿) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿))
7 eluz2 11731 . . . . . . . . 9 (𝑥 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥))
8 simprrl 821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
98adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀 ∈ ℤ)
10 simpll 805 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑥 ∈ ℤ)
11 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℝ)
15 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1615adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℝ)
1817adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐾 ∈ ℝ)
19 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑥 ∈ ℝ)
21 letr 10169 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2214, 18, 20, 21syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2322imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀𝑥)
249, 10, 233jca 1261 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
2524exp31 629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℤ → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝐾𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℤ → ((𝑀𝐾𝐾𝑥) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2726expdimp 452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑥 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2827impancom 455 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2928com13 88 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
30293adant3 1101 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3130com12 32 . . . . . . . . . . . . . . . . . 18 (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3231adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀𝐾𝐿𝑁) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3332impcom 445 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3433com12 32 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3534adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3635imp 444 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
37 eluz2 11731 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
3836, 37sylibr 224 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (ℤ𝑀))
39 simpl2r 1135 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑁 ∈ ℤ)
4039adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑁 ∈ ℤ)
4119adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
42 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4342ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝐿 ∈ ℝ)
44 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4544adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
48 ltletr 10167 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
4941, 43, 47, 48syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
5049ex 449 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑥 ∈ ℤ → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁)))
5150com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
52513adant3 1101 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5352expcomd 453 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐿𝑁 → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5453adantld 482 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5554imp 444 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5655com13 88 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5756adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5857imp 444 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁))
5958imp 444 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 < 𝑁)
60 elfzo2 12512 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀..^𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑥 < 𝑁))
6138, 40, 59, 60syl3anbrc 1265 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (𝑀..^𝑁))
6261exp31 629 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
63623adant1 1099 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
647, 63sylbi 207 . . . . . . . 8 (𝑥 ∈ (ℤ𝐾) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
6564imp 444 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
66653adant2 1100 . . . . . 6 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
676, 66sylbi 207 . . . . 5 (𝑥 ∈ (𝐾..^𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
6867com12 32 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 ∈ (𝐾..^𝐿) → 𝑥 ∈ (𝑀..^𝑁)))
6968ssrdv 3642 . . 3 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁))
7069ex 449 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁)))
715, 70impbid 202 1 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wcel 2030  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973   < clt 10112  cle 10113  cz 11415  cuz 11725  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  swrdnd  13478  repswswrd  13577  iccpartgt  41688
  Copyright terms: Public domain W3C validator