Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sslttr Structured version   Visualization version   GIF version

Theorem sslttr 32212
Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sslttr ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)

Proof of Theorem sslttr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4066 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 ssltex1 32199 . . . . . . . . 9 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltex2 32200 . . . . . . . . 9 (𝐵 <<s 𝐶𝐶 ∈ V)
42, 3anim12i 591 . . . . . . . 8 ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
54adantl 473 . . . . . . 7 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
6 ssltss1 32201 . . . . . . . . 9 (𝐴 <<s 𝐵𝐴 No )
76ad2antrl 766 . . . . . . . 8 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐴 No )
8 ssltss2 32202 . . . . . . . . 9 (𝐵 <<s 𝐶𝐶 No )
98ad2antll 767 . . . . . . . 8 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐶 No )
107adantr 472 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝐴 No )
11 simprl 811 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥𝐴)
1210, 11sseldd 3737 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥 No )
13 ssltss1 32201 . . . . . . . . . . . . 13 (𝐵 <<s 𝐶𝐵 No )
1413ad2antll 767 . . . . . . . . . . . 12 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐵 No )
1514adantr 472 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝐵 No )
16 simpll 807 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑦𝐵)
1715, 16sseldd 3737 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑦 No )
189adantr 472 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝐶 No )
19 simprr 813 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑧𝐶)
2018, 19sseldd 3737 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑧 No )
21 ssltsep 32203 . . . . . . . . . . . . . 14 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
2221ad2antrl 766 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
2322adantr 472 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
24 rsp 3059 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → (𝑥𝐴 → ∀𝑦𝐵 𝑥 <s 𝑦))
2523, 11, 24sylc 65 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑦𝐵 𝑥 <s 𝑦)
26 rsp 3059 . . . . . . . . . . 11 (∀𝑦𝐵 𝑥 <s 𝑦 → (𝑦𝐵𝑥 <s 𝑦))
2725, 16, 26sylc 65 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥 <s 𝑦)
28 ssltsep 32203 . . . . . . . . . . . . . 14 (𝐵 <<s 𝐶 → ∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧)
2928ad2antll 767 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → ∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧)
3029adantr 472 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧)
31 rsp 3059 . . . . . . . . . . . 12 (∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧 → (𝑦𝐵 → ∀𝑧𝐶 𝑦 <s 𝑧))
3230, 16, 31sylc 65 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑧𝐶 𝑦 <s 𝑧)
33 rsp 3059 . . . . . . . . . . 11 (∀𝑧𝐶 𝑦 <s 𝑧 → (𝑧𝐶𝑦 <s 𝑧))
3432, 19, 33sylc 65 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑦 <s 𝑧)
3512, 17, 20, 27, 34slttrd 32182 . . . . . . . . 9 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥 <s 𝑧)
3635ralrimivva 3101 . . . . . . . 8 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → ∀𝑥𝐴𝑧𝐶 𝑥 <s 𝑧)
377, 9, 363jca 1122 . . . . . . 7 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑧𝐶 𝑥 <s 𝑧))
38 brsslt 32198 . . . . . . 7 (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑧𝐶 𝑥 <s 𝑧)))
395, 37, 38sylanbrc 701 . . . . . 6 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐴 <<s 𝐶)
4039ex 449 . . . . 5 (𝑦𝐵 → ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶))
4140exlimiv 1999 . . . 4 (∃𝑦 𝑦𝐵 → ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶))
421, 41sylbi 207 . . 3 (𝐵 ≠ ∅ → ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶))
4342com12 32 . 2 ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → (𝐵 ≠ ∅ → 𝐴 <<s 𝐶))
44433impia 1109 1 ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wex 1845  wcel 2131  wne 2924  wral 3042  Vcvv 3332  wss 3707  c0 4050   class class class wbr 4796   No csur 32091   <s cslt 32092   <<s csslt 32194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-ord 5879  df-on 5880  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-fv 6049  df-1o 7721  df-2o 7722  df-no 32094  df-slt 32095  df-sslt 32195
This theorem is referenced by:  scutun12  32215  scutbdaylt  32220
  Copyright terms: Public domain W3C validator