Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnn0ssfz Structured version   Visualization version   GIF version

Theorem ssnn0ssfz 41388
Description: For any finite subset of 0, find a superset in the form of a set of sequential integers, analogous to ssnnssfz 29383. (Contributed by AV, 30-Sep-2019.)
Assertion
Ref Expression
ssnn0ssfz (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnn0ssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 11252 . . 3 0 ∈ ℕ0
2 simpr 477 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 3949 . . . 4 ∅ ⊆ (0...0)
42, 3syl6eqss 3639 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (0...0))
5 oveq2 6613 . . . . 5 (𝑛 = 0 → (0...𝑛) = (0...0))
65sseq2d 3617 . . . 4 (𝑛 = 0 → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...0)))
76rspcev 3300 . . 3 ((0 ∈ ℕ0𝐴 ⊆ (0...0)) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
81, 4, 7sylancr 694 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
9 elin 3779 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ0𝐴 ∈ Fin))
109simplbi 476 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ 𝒫 ℕ0)
1110adantr 481 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ0)
1211elpwid 4146 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ0)
13 nn0ssre 11241 . . . . . . 7 0 ⊆ ℝ
14 ltso 10063 . . . . . . 7 < Or ℝ
15 soss 5018 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ0
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ0)
189simprbi 480 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 481 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 477 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 8320 . . . . 5 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1325 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2312, 22sseldd 3589 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
2412sselda 3588 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
25 nn0uz 11666 . . . . . . 7 0 = (ℤ‘0)
2624, 25syl6eleq 2714 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘0))
2724nn0zd 11424 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 481 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ0)
2922adantr 481 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
3028, 29sseldd 3589 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
3130nn0zd 11424 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℤ)
32 fisup2g 8319 . . . . . . . . . . . 12 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1325 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 3651 . . . . . . . . . . 11 (𝐴 ⊆ ℕ0 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 8310 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ0, < ) < 𝑥))
3736imp 445 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ0, < ) < 𝑥)
3824nn0red 11297 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nn0red 11297 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℝ)
4038, 39lenltd 10128 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ0, < ) ↔ ¬ sup(𝐴, ℕ0, < ) < 𝑥))
4137, 40mpbird 247 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ0, < ))
42 eluz2 11637 . . . . . . 7 (sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ0, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ0, < )))
4327, 31, 41, 42syl3anbrc 1244 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥))
44 eluzfz 12276 . . . . . 6 ((𝑥 ∈ (ℤ‘0) ∧ sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4526, 43, 44syl2anc 692 . . . . 5 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4645ex 450 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (0...sup(𝐴, ℕ0, < ))))
4746ssrdv 3594 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (0...sup(𝐴, ℕ0, < )))
48 oveq2 6613 . . . . 5 (𝑛 = sup(𝐴, ℕ0, < ) → (0...𝑛) = (0...sup(𝐴, ℕ0, < )))
4948sseq2d 3617 . . . 4 (𝑛 = sup(𝐴, ℕ0, < ) → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))))
5049rspcev 3300 . . 3 ((sup(𝐴, ℕ0, < ) ∈ ℕ0𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
5123, 47, 50syl2anc 692 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
528, 51pm2.61dane 2883 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  cin 3559  wss 3560  c0 3896  𝒫 cpw 4135   class class class wbr 4618   Or wor 4999  cfv 5850  (class class class)co 6605  Fincfn 7900  supcsup 8291  cr 9880  0cc0 9881   < clt 10019  cle 10020  0cn0 11237  cz 11322  cuz 11631  ...cfz 12265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator