Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnnfi Structured version   Visualization version   GIF version

Theorem ssnnfi 8131
 Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.)
Assertion
Ref Expression
ssnnfi ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssnnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspss 3689 . . 3 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
2 pssnn 8130 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥𝐴 𝐵𝑥)
3 elnn 7029 . . . . . . . . 9 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
43expcom 451 . . . . . . . 8 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
54anim1d 587 . . . . . . 7 (𝐴 ∈ ω → ((𝑥𝐴𝐵𝑥) → (𝑥 ∈ ω ∧ 𝐵𝑥)))
65reximdv2 3009 . . . . . 6 (𝐴 ∈ ω → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
76adantr 481 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (∃𝑥𝐴 𝐵𝑥 → ∃𝑥 ∈ ω 𝐵𝑥))
82, 7mpd 15 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
9 eleq1 2686 . . . . . 6 (𝐵 = 𝐴 → (𝐵 ∈ ω ↔ 𝐴 ∈ ω))
109biimparc 504 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐵 ∈ ω)
11 enrefg 7939 . . . . . 6 (𝐵 ∈ ω → 𝐵𝐵)
1211ancli 573 . . . . 5 (𝐵 ∈ ω → (𝐵 ∈ ω ∧ 𝐵𝐵))
13 breq2 4622 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
1413rspcev 3298 . . . . 5 ((𝐵 ∈ ω ∧ 𝐵𝐵) → ∃𝑥 ∈ ω 𝐵𝑥)
1510, 12, 143syl 18 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
168, 15jaodan 825 . . 3 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → ∃𝑥 ∈ ω 𝐵𝑥)
171, 16sylan2b 492 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐵𝑥)
18 isfi 7931 . 2 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
1917, 18sylibr 224 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   ⊆ wss 3559   ⊊ wpss 3560   class class class wbr 4618  ωcom 7019   ≈ cen 7904  Fincfn 7907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-om 7020  df-en 7908  df-fin 7911 This theorem is referenced by:  ssfi  8132  0fin  8140  en1eqsn  8142  isfinite2  8170  pwfi  8213  wofib  8402  infpwfien  8837  fin67  9169  hashcard  13094  rexpen  14893
 Copyright terms: Public domain W3C validator