![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssonuni | Structured version Visualization version GIF version |
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.) |
Ref | Expression |
---|---|
ssonuni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssorduni 7027 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
2 | uniexg 6997 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
3 | elong 5769 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) |
5 | 1, 4 | syl5ibr 236 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ∪ cuni 4468 Ord word 5760 Oncon0 5761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 |
This theorem is referenced by: ssonunii 7029 onuni 7035 iunon 7481 onfununi 7483 oemapvali 8619 cardprclem 8843 carduni 8845 dfac12lem2 9004 ontgval 32555 |
Copyright terms: Public domain | W3C validator |