Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspadd2 Structured version   Visualization version   GIF version

Theorem sspadd2 34921
Description: A projective subspace sum is a superset of its second summand. (ssun2 3769 analog.) (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
sspadd2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑌 + 𝑋))

Proof of Theorem sspadd2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun2 3769 . . 3 𝑋 ⊆ (𝑌𝑋)
2 ssun1 3768 . . 3 (𝑌𝑋) ⊆ ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
31, 2sstri 3604 . 2 𝑋 ⊆ ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
4 eqid 2620 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2620 . . . 4 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
7 padd0.p . . . 4 + = (+𝑃𝐾)
84, 5, 6, 7paddval 34903 . . 3 ((𝐾𝐵𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
983com23 1269 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
103, 9syl5sseqr 3646 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1481  wcel 1988  wrex 2910  {crab 2913  cun 3565  wss 3567   class class class wbr 4644  cfv 5876  (class class class)co 6635  lecple 15929  joincjn 16925  Atomscatm 34369  +𝑃cpadd 34900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-padd 34901
This theorem is referenced by:  paddasslem11  34935  paddasslem12  34936  paddssw2  34949  pmodlem2  34952  pmodl42N  34956  osumcllem10N  35070  pexmidlem7N  35081  pl42lem3N  35086
  Copyright terms: Public domain W3C validator