![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspims | Structured version Visualization version GIF version |
Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspims.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
sspims.d | ⊢ 𝐷 = (IndMet‘𝑈) |
sspims.c | ⊢ 𝐶 = (IndMet‘𝑊) |
sspims.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspims | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspims.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | sspims.h | . 2 ⊢ 𝐻 = (SubSp‘𝑈) | |
3 | sspims.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | sspims.c | . . 3 ⊢ 𝐶 = (IndMet‘𝑊) | |
5 | 1, 3, 4, 2 | sspimsval 27721 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐶𝑦) = (𝑥𝐷𝑦)) |
6 | 1, 4 | imsdf 27672 | . 2 ⊢ (𝑊 ∈ NrmCVec → 𝐶:(𝑌 × 𝑌)⟶ℝ) |
7 | eqid 2651 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
8 | 7, 3 | imsdf 27672 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐷:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶ℝ) |
9 | 1, 2, 5, 6, 8 | sspmlem 27715 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 × cxp 5141 ↾ cres 5145 ‘cfv 5926 ℝcr 9973 NrmCVeccnv 27567 BaseSetcba 27569 IndMetcims 27574 SubSpcss 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-sub 10306 df-neg 10307 df-grpo 27475 df-gid 27476 df-ginv 27477 df-gdiv 27478 df-ablo 27527 df-vc 27542 df-nv 27575 df-va 27578 df-ba 27579 df-sm 27580 df-0v 27581 df-vs 27582 df-nmcv 27583 df-ims 27584 df-ssp 27705 |
This theorem is referenced by: bnsscmcl 27852 minvecolem4a 27861 |
Copyright terms: Public domain | W3C validator |