MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspimsval Structured version   Visualization version   GIF version

Theorem sspimsval 28517
Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspims.y 𝑌 = (BaseSet‘𝑊)
sspims.d 𝐷 = (IndMet‘𝑈)
sspims.c 𝐶 = (IndMet‘𝑊)
sspims.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspimsval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))

Proof of Theorem sspimsval
StepHypRef Expression
1 sspims.h . . . . . 6 𝐻 = (SubSp‘𝑈)
21sspnv 28505 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 sspims.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
4 eqid 2823 . . . . . . 7 ( −𝑣𝑊) = ( −𝑣𝑊)
53, 4nvmcl 28425 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
653expb 1116 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
72, 6sylan 582 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌)
8 eqid 2823 . . . . . 6 (normCV𝑈) = (normCV𝑈)
9 eqid 2823 . . . . . 6 (normCV𝑊) = (normCV𝑊)
103, 8, 9, 1sspnval 28516 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
11103expa 1114 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴( −𝑣𝑊)𝐵) ∈ 𝑌) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
127, 11syldan 593 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)))
13 eqid 2823 . . . . 5 ( −𝑣𝑈) = ( −𝑣𝑈)
143, 13, 4, 1sspmval 28512 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( −𝑣𝑊)𝐵) = (𝐴( −𝑣𝑈)𝐵))
1514fveq2d 6676 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑈)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
1612, 15eqtrd 2858 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
17 sspims.c . . . . 5 𝐶 = (IndMet‘𝑊)
183, 4, 9, 17imsdval 28465 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
19183expb 1116 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
202, 19sylan 582 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = ((normCV𝑊)‘(𝐴( −𝑣𝑊)𝐵)))
21 eqid 2823 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2221, 3, 1sspba 28506 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2322sseld 3968 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2422sseld 3968 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
2523, 24anim12d 610 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
2625imp 409 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
27 sspims.d . . . . . 6 𝐷 = (IndMet‘𝑈)
2821, 13, 8, 27imsdval 28465 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
29283expb 1116 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3029adantlr 713 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3126, 30syldan 593 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐷𝐵) = ((normCV𝑈)‘(𝐴( −𝑣𝑈)𝐵)))
3216, 20, 313eqtr4d 2868 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  NrmCVeccnv 28363  BaseSetcba 28365  𝑣 cnsb 28368  normCVcnmcv 28369  IndMetcims 28370  SubSpcss 28500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-sub 10874  df-neg 10875  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-ssp 28501
This theorem is referenced by:  sspims  28518
  Copyright terms: Public domain W3C validator