MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmval Structured version   Visualization version   GIF version

Theorem sspmval 28437
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspm.y 𝑌 = (BaseSet‘𝑊)
sspm.m 𝑀 = ( −𝑣𝑈)
sspm.l 𝐿 = ( −𝑣𝑊)
sspm.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspmval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))

Proof of Theorem sspmval
StepHypRef Expression
1 sspm.h . . . . . . . 8 𝐻 = (SubSp‘𝑈)
21sspnv 28430 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 neg1cn 11739 . . . . . . . . 9 -1 ∈ ℂ
4 sspm.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
5 eqid 2818 . . . . . . . . . 10 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
64, 5nvscl 28330 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
73, 6mp3an2 1440 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
87ex 413 . . . . . . 7 (𝑊 ∈ NrmCVec → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
92, 8syl 17 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
109anim2d 611 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)))
1110imp 407 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
12 eqid 2818 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
13 eqid 2818 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
144, 12, 13, 1sspgval 28433 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
1511, 14syldan 591 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
16 eqid 2818 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
174, 16, 5, 1sspsval 28435 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (-1 ∈ ℂ ∧ 𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
183, 17mpanr1 699 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
1918adantrl 712 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
2019oveq2d 7161 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
2115, 20eqtrd 2853 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
22 sspm.l . . . . 5 𝐿 = ( −𝑣𝑊)
234, 13, 5, 22nvmval 28346 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
24233expb 1112 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
252, 24sylan 580 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
26 eqid 2818 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2726, 4, 1sspba 28431 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2827sseld 3963 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2927sseld 3963 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
3028, 29anim12d 608 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
3130imp 407 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
32 sspm.m . . . . . 6 𝑀 = ( −𝑣𝑈)
3326, 12, 16, 32nvmval 28346 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
34333expb 1112 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3534adantlr 711 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3631, 35syldan 591 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3721, 25, 363eqtr4d 2863 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cc 10523  1c1 10526  -cneg 10859  NrmCVeccnv 28288   +𝑣 cpv 28289  BaseSetcba 28290   ·𝑠OLD cns 28291  𝑣 cnsb 28293  SubSpcss 28425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-grpo 28197  df-gid 28198  df-ginv 28199  df-gdiv 28200  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-vs 28303  df-nmcv 28304  df-ssp 28426
This theorem is referenced by:  sspm  28438  sspz  28439  sspimsval  28442
  Copyright terms: Public domain W3C validator