MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmval Structured version   Visualization version   GIF version

Theorem sspmval 27716
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspm.y 𝑌 = (BaseSet‘𝑊)
sspm.m 𝑀 = ( −𝑣𝑈)
sspm.l 𝐿 = ( −𝑣𝑊)
sspm.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspmval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))

Proof of Theorem sspmval
StepHypRef Expression
1 sspm.h . . . . . . . 8 𝐻 = (SubSp‘𝑈)
21sspnv 27709 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 neg1cn 11162 . . . . . . . . 9 -1 ∈ ℂ
4 sspm.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
5 eqid 2651 . . . . . . . . . 10 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
64, 5nvscl 27609 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
73, 6mp3an2 1452 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
87ex 449 . . . . . . 7 (𝑊 ∈ NrmCVec → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
92, 8syl 17 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
109anim2d 588 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)))
1110imp 444 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
12 eqid 2651 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
13 eqid 2651 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
144, 12, 13, 1sspgval 27712 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
1511, 14syldan 486 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
16 eqid 2651 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
174, 16, 5, 1sspsval 27714 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (-1 ∈ ℂ ∧ 𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
183, 17mpanr1 719 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
1918adantrl 752 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
2019oveq2d 6706 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
2115, 20eqtrd 2685 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
22 sspm.l . . . . 5 𝐿 = ( −𝑣𝑊)
234, 13, 5, 22nvmval 27625 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
24233expb 1285 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
252, 24sylan 487 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
26 eqid 2651 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2726, 4, 1sspba 27710 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2827sseld 3635 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2927sseld 3635 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
3028, 29anim12d 585 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
3130imp 444 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
32 sspm.m . . . . . 6 𝑀 = ( −𝑣𝑈)
3326, 12, 16, 32nvmval 27625 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
34333expb 1285 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3534adantlr 751 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3631, 35syldan 486 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3721, 25, 363eqtr4d 2695 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  cc 9972  1c1 9975  -cneg 10305  NrmCVeccnv 27567   +𝑣 cpv 27568  BaseSetcba 27569   ·𝑠OLD cns 27570  𝑣 cnsb 27572  SubSpcss 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-neg 10307  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ssp 27705
This theorem is referenced by:  sspm  27717  sspz  27718  sspimsval  27721  sspph  27838
  Copyright terms: Public domain W3C validator