![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspnv | Structured version Visualization version GIF version |
Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspnv.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspnv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | eqid 2651 | . . 3 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
3 | eqid 2651 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2651 | . . 3 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
5 | eqid 2651 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
6 | eqid 2651 | . . 3 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
7 | sspnv.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 27707 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
9 | 8 | simprbda 652 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ‘cfv 5926 NrmCVeccnv 27567 +𝑣 cpv 27568 ·𝑠OLD cns 27570 normCVcnmcv 27573 SubSpcss 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fo 5932 df-fv 5934 df-oprab 6694 df-1st 7210 df-2nd 7211 df-vc 27542 df-nv 27575 df-va 27578 df-sm 27580 df-nmcv 27583 df-ssp 27705 |
This theorem is referenced by: sspg 27711 ssps 27713 sspmlem 27715 sspmval 27716 sspz 27718 sspn 27719 sspimsval 27721 sspph 27838 bnsscmcl 27852 minvecolem2 27859 hhshsslem1 28252 hhshsslem2 28253 |
Copyright terms: Public domain | W3C validator |