Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimp Structured version   Visualization version   GIF version

Theorem sspwimp 41129
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. For the biconditional, see sspwb 5332. The proof sspwimp 41129, using conventional notation, was translated from virtual deduction form, sspwimpVD 41130, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimp (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3495 . . . . . . 7 𝑥 ∈ V
21a1i 11 . . . . . 6 (⊤ → 𝑥 ∈ V)
3 id 22 . . . . . . 7 (𝐴𝐵𝐴𝐵)
4 id 22 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐴)
5 elpwi 4547 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
64, 5syl 17 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 sstr 3972 . . . . . . . 8 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
87ancoms 459 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
93, 6, 8syl2an 595 . . . . . 6 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥𝐵)
102, 9elpwgded 40775 . . . . . 6 ((⊤ ∧ (𝐴𝐵𝑥 ∈ 𝒫 𝐴)) → 𝑥 ∈ 𝒫 𝐵)
112, 9, 10uun0.1 40989 . . . . 5 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝒫 𝐵)
1211ex 413 . . . 4 (𝐴𝐵 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1312alrimiv 1919 . . 3 (𝐴𝐵 → ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
14 dfss2 3952 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1514biimpri 229 . . 3 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1613, 15syl 17 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1716iin1 40783 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1526  wtru 1529  wcel 2105  Vcvv 3492  wss 3933  𝒫 cpw 4535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-v 3494  df-in 3940  df-ss 3949  df-pw 4537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator