Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtrALT Structured version   Visualization version   GIF version

Theorem sspwtrALT 41033
Description: Virtual deduction proof of sspwtr 41032. This proof is the same as the proof of sspwtr 41032 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtrALT (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)

Proof of Theorem sspwtrALT
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5165 . . 3 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
2 simpr 485 . . . . . 6 ((𝑧𝑦𝑦𝐴) → 𝑦𝐴)
3 ssel 3958 . . . . . 6 (𝐴 ⊆ 𝒫 𝐴 → (𝑦𝐴𝑦 ∈ 𝒫 𝐴))
4 elpwi 4547 . . . . . 6 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
52, 3, 4syl56 36 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦𝐴))
6 idd 24 . . . . . 6 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → (𝑧𝑦𝑦𝐴)))
7 simpl 483 . . . . . 6 ((𝑧𝑦𝑦𝐴) → 𝑧𝑦)
86, 7syl6 35 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝑦))
9 ssel 3958 . . . . 5 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
105, 8, 9syl6c 70 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
1110alrimivv 1920 . . 3 (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
12 biimpr 221 . . 3 ((Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴) → Tr 𝐴))
131, 11, 12mpsyl 68 . 2 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
1413idiALT 40688 1 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1526  wcel 2105  wss 3933  𝒫 cpw 4535  Tr wtr 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-v 3494  df-in 3940  df-ss 3949  df-pw 4537  df-uni 4831  df-tr 5164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator