Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtrALT Structured version   Visualization version   GIF version

Theorem sspwtrALT 39436
 Description: Virtual deduction proof of sspwtr 39435. This proof is the same as the proof of sspwtr 39435 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtrALT (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)

Proof of Theorem sspwtrALT
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4830 . . 3 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
2 simpr 479 . . . . . 6 ((𝑧𝑦𝑦𝐴) → 𝑦𝐴)
3 ssel 3671 . . . . . 6 (𝐴 ⊆ 𝒫 𝐴 → (𝑦𝐴𝑦 ∈ 𝒫 𝐴))
4 elpwi 4244 . . . . . 6 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
52, 3, 4syl56 36 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦𝐴))
6 idd 24 . . . . . 6 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → (𝑧𝑦𝑦𝐴)))
7 simpl 474 . . . . . 6 ((𝑧𝑦𝑦𝐴) → 𝑧𝑦)
86, 7syl6 35 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝑦))
9 ssel 3671 . . . . 5 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
105, 8, 9syl6c 70 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
1110alrimivv 1937 . . 3 (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
12 biimpr 210 . . 3 ((Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴) → Tr 𝐴))
131, 11, 12mpsyl 68 . 2 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
1413idiALT 39070 1 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1562   ∈ wcel 2071   ⊆ wss 3648  𝒫 cpw 4234  Tr wtr 4828 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-v 3274  df-in 3655  df-ss 3662  df-pw 4236  df-uni 4513  df-tr 4829 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator