Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabeq Structured version   Visualization version   GIF version

Theorem ssrabeq 3667
 Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 3666 . . 3 {𝑥𝑉𝜑} ⊆ 𝑉
21biantru 526 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
3 eqss 3598 . 2 (𝑉 = {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
42, 3bitr4i 267 1 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1480  {crab 2911   ⊆ wss 3555 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-in 3562  df-ss 3569 This theorem is referenced by:  difrab0eq  4010
 Copyright terms: Public domain W3C validator