MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrd Structured version   Visualization version   GIF version

Theorem ssrd 3573
Description: Deduction rule based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
ssrd.0 𝑥𝜑
ssrd.1 𝑥𝐴
ssrd.2 𝑥𝐵
ssrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
ssrd (𝜑𝐴𝐵)

Proof of Theorem ssrd
StepHypRef Expression
1 ssrd.0 . . 3 𝑥𝜑
2 ssrd.3 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
31, 2alrimi 2069 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝑥𝐵))
4 ssrd.1 . . 3 𝑥𝐴
5 ssrd.2 . . 3 𝑥𝐵
64, 5dfss2f 3559 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
73, 6sylibr 223 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wnf 1699  wcel 1977  wnfc 2738  wss 3540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-in 3547  df-ss 3554
This theorem is referenced by:  eqrd  3586  neiptopnei  20694  rabss3d  28530  topdifinffinlem  32165  relowlssretop  32181  ssfiunibd  38258  stoweidlem52  38739  stoweidlem59  38746
  Copyright terms: Public domain W3C validator