MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrnres Structured version   Visualization version   GIF version

Theorem ssrnres 6037
Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
ssrnres (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem ssrnres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4208 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
21rnssi 5812 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
3 rnxpss 6031 . . . 4 ran (𝐴 × 𝐵) ⊆ 𝐵
42, 3sstri 3978 . . 3 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵
5 eqss 3984 . . 3 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))))
64, 5mpbiran 707 . 2 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
7 inxpssres 5574 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴)
87rnssi 5812 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)
9 sstr 3977 . . . 4 ((𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ∧ ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)) → 𝐵 ⊆ ran (𝐶𝐴))
108, 9mpan2 689 . . 3 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) → 𝐵 ⊆ ran (𝐶𝐴))
11 ssel 3963 . . . . . . 7 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶𝐴)))
12 vex 3499 . . . . . . . 8 𝑦 ∈ V
1312elrn2 5823 . . . . . . 7 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴))
1411, 13syl6ib 253 . . . . . 6 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
1514ancld 553 . . . . 5 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → (𝑦𝐵 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴))))
1612elrn2 5823 . . . . . 6 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)))
17 opelinxp 5633 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
1812opelresi 5863 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
1918bianassc 641 . . . . . . . 8 ((𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)) ↔ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
2017, 19bitr4i 280 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2120exbii 1848 . . . . . 6 (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥(𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
22 19.42v 1954 . . . . . 6 (∃𝑥(𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2316, 21, 223bitri 299 . . . . 5 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2415, 23syl6ibr 254 . . . 4 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵))))
2524ssrdv 3975 . . 3 (𝐵 ⊆ ran (𝐶𝐴) → 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
2610, 25impbii 211 . 2 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ 𝐵 ⊆ ran (𝐶𝐴))
276, 26bitr2i 278 1 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  cin 3937  wss 3938  cop 4575   × cxp 5555  ran crn 5558  cres 5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565  df-dm 5567  df-rn 5568  df-res 5569
This theorem is referenced by:  rninxp  6038
  Copyright terms: Public domain W3C validator