Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd3 Structured version   Visualization version   GIF version

Theorem sstotbnd3 35056
Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Distinct variable groups:   𝑣,𝑑,𝑥,𝑀   𝑋,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑑,𝑣,𝑥

Proof of Theorem sstotbnd3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . 4 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 35054 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
3 elin 4171 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin))
4 rabfi 8745 . . . . . . . . . 10 (𝑣 ∈ Fin → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
54anim2i 618 . . . . . . . . 9 ((𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
63, 5sylbi 219 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
76anim2i 618 . . . . . . 7 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
87ancoms 461 . . . . . 6 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
9 an12 643 . . . . . 6 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
108, 9sylib 220 . . . . 5 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
1110reximi2 3246 . . . 4 (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
1211ralimi 3162 . . 3 (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
132, 12syl6bi 255 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
14 ssrab2 4058 . . . . . . . 8 {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑣
15 elpwi 4550 . . . . . . . . 9 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
1615ad2antlr 725 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑣𝑋)
1714, 16sstrid 3980 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋)
18 simprr 771 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
19 elfpw 8828 . . . . . . 7 ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ↔ ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
2017, 18, 19sylanbrc 585 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin))
21 ssel2 3964 . . . . . . . . . . . 12 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
22 eliun 4925 . . . . . . . . . . . 12 (𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
2321, 22sylib 220 . . . . . . . . . . 11 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
24 inelcm 4416 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅)
2524expcom 416 . . . . . . . . . . . . . 14 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅))
2625ancrd 554 . . . . . . . . . . . . 13 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2726reximdv 3275 . . . . . . . . . . . 12 (𝑧𝑌 → (∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2827impcom 410 . . . . . . . . . . 11 ((∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
2923, 28sylancom 590 . . . . . . . . . 10 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
30 eliun 4925 . . . . . . . . . . 11 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑))
31 oveq1 7165 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)𝑑))
3231eleq2d 2900 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3332rexrab2 3695 . . . . . . . . . . 11 (∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3430, 33bitri 277 . . . . . . . . . 10 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3529, 34sylibr 236 . . . . . . . . 9 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3635ex 415 . . . . . . . 8 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → (𝑧𝑌𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
3736ssrdv 3975 . . . . . . 7 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3837ad2antrl 726 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
39 iuneq1 4937 . . . . . . . 8 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) = 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
4039sseq2d 4001 . . . . . . 7 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → (𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) ↔ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
4140rspcev 3625 . . . . . 6 (({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4220, 38, 41syl2anc 586 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4342rexlimdva2 3289 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4443ralimdv 3180 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
451sstotbnd2 35054 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4644, 45sylibrd 261 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → 𝑁 ∈ (TotBnd‘𝑌)))
4713, 46impbid 214 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   ciun 4921   × cxp 5555  cres 5559  cfv 6357  (class class class)co 7158  Fincfn 8511  +crp 12392  Metcmet 20533  ballcbl 20534  TotBndctotbnd 35046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-totbnd 35048
This theorem is referenced by:  cntotbnd  35076
  Copyright terms: Public domain W3C validator