Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstrALT2 Structured version   Visualization version   GIF version

Theorem sstrALT2 41162
Description: Virtual deduction proof of sstr 3974, transitivity of subclasses, Theorem 6 of [Suppes] p. 23. This theorem was automatically generated from sstrALT2VD 41161 using the command file translate_without_overwriting.cmd . It was not minimized because the automated minimization excluding duplicates generates a minimized proof which, although not directly containing any duplicates, indirectly contains a duplicate. That is, the trace back of the minimized proof contains a duplicate. This is undesirable because some step(s) of the minimized proof use the proven theorem. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sstrALT2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sstrALT2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3954 . 2 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
2 id 22 . . . . . 6 ((𝐴𝐵𝐵𝐶) → (𝐴𝐵𝐵𝐶))
3 simpr 487 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
42, 3syl 17 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
5 simpl 485 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
62, 5syl 17 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
7 idd 24 . . . . . 6 ((𝐴𝐵𝐵𝐶) → (𝑥𝐴𝑥𝐴))
8 ssel2 3961 . . . . . 6 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
96, 7, 8syl6an 682 . . . . 5 ((𝐴𝐵𝐵𝐶) → (𝑥𝐴𝑥𝐵))
10 ssel2 3961 . . . . 5 ((𝐵𝐶𝑥𝐵) → 𝑥𝐶)
114, 9, 10syl6an 682 . . . 4 ((𝐴𝐵𝐵𝐶) → (𝑥𝐴𝑥𝐶))
1211idiALT 40804 . . 3 ((𝐴𝐵𝐵𝐶) → (𝑥𝐴𝑥𝐶))
1312alrimiv 1924 . 2 ((𝐴𝐵𝐵𝐶) → ∀𝑥(𝑥𝐴𝑥𝐶))
14 biimpr 222 . 2 ((𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶)) → (∀𝑥(𝑥𝐴𝑥𝐶) → 𝐴𝐶))
151, 13, 14mpsyl 68 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531  wcel 2110  wss 3935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-in 3942  df-ss 3951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator