MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstskm Structured version   Visualization version   GIF version

Theorem sstskm 10263
Description: Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
sstskm (𝐴𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sstskm
StepHypRef Expression
1 tskmval 10260 . . . 4 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
2 df-rab 3147 . . . . 5 {𝑥 ∈ Tarski ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)}
32inteqi 4879 . . . 4 {𝑥 ∈ Tarski ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)}
41, 3syl6eq 2872 . . 3 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)})
54sseq2d 3998 . 2 (𝐴𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ 𝐵 {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)}))
6 impexp 453 . . . 4 (((𝑥 ∈ Tarski ∧ 𝐴𝑥) → 𝐵𝑥) ↔ (𝑥 ∈ Tarski → (𝐴𝑥𝐵𝑥)))
76albii 1816 . . 3 (∀𝑥((𝑥 ∈ Tarski ∧ 𝐴𝑥) → 𝐵𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴𝑥𝐵𝑥)))
8 ssintab 4892 . . 3 (𝐵 {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)} ↔ ∀𝑥((𝑥 ∈ Tarski ∧ 𝐴𝑥) → 𝐵𝑥))
9 df-ral 3143 . . 3 (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴𝑥𝐵𝑥)))
107, 8, 93bitr4i 305 . 2 (𝐵 {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥))
115, 10syl6bb 289 1 (𝐴𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531  wcel 2110  {cab 2799  wral 3138  {crab 3142  wss 3935   cint 4875  cfv 6354  Tarskictsk 10169  tarskiMapctskm 10258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-groth 10244
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-tsk 10170  df-tskm 10259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator