![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssun3 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun3 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3919 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | sstr2 3751 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐵 ∪ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3713 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-in 3722 df-ss 3729 |
This theorem is referenced by: ssun 3935 ssunsn2 4504 xpsspw 5389 wfrlem15 7598 uncmp 21408 alexsubALTlem3 22054 sxbrsigalem0 30642 bnj1450 31425 altxpsspw 32390 superuncl 38375 cnvtrcl0 38435 |
Copyright terms: Public domain | W3C validator |