MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssundif Structured version   Visualization version   GIF version

Theorem ssundif 4432
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
ssundif (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm5.6 998 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
2 eldif 3945 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32imbi1i 352 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
4 elun 4124 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
54imbi2i 338 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
61, 3, 53bitr4ri 306 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
76albii 1816 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
8 dfss2 3954 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
9 dfss2 3954 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
107, 8, 93bitr4i 305 1 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1531  wcel 2110  cdif 3932  cun 3933  wss 3935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951
This theorem is referenced by:  difcom  4433  uneqdifeq  4437  ssunsn2  4753  elpwun  7485  soex  7620  ressuppssdif  7845  frfi  8757  cantnfp1lem3  9137  dfacfin7  9815  zornn0g  9921  fpwwe2lem13  10058  hashbclem  13804  incexclem  15185  ramub1lem1  16356  lpcls  21966  cmpcld  22004  alexsubALTlem3  22651  restmetu  23174  uniiccdif  24173  abelthlem2  25014  abelthlem3  25015  pmtrcnelor  30730  imadifss  34861  frege124d  40099
  Copyright terms: Public domain W3C validator