MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunpr Structured version   Visualization version   GIF version

Theorem ssunpr 4768
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunpr ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))))

Proof of Theorem ssunpr
StepHypRef Expression
1 df-pr 4573 . . . . . 6 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
21uneq2i 4139 . . . . 5 (𝐵 ∪ {𝐶, 𝐷}) = (𝐵 ∪ ({𝐶} ∪ {𝐷}))
3 unass 4145 . . . . 5 ((𝐵 ∪ {𝐶}) ∪ {𝐷}) = (𝐵 ∪ ({𝐶} ∪ {𝐷}))
42, 3eqtr4i 2850 . . . 4 (𝐵 ∪ {𝐶, 𝐷}) = ((𝐵 ∪ {𝐶}) ∪ {𝐷})
54sseq2i 3999 . . 3 (𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷}) ↔ 𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))
65anbi2i 624 . 2 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ (𝐵𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})))
7 ssunsn2 4763 . 2 ((𝐵𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))))
8 ssunsn 4764 . . 3 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
9 un23 4147 . . . . . 6 ((𝐵 ∪ {𝐶}) ∪ {𝐷}) = ((𝐵 ∪ {𝐷}) ∪ {𝐶})
109sseq2i 3999 . . . . 5 (𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}) ↔ 𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶}))
1110anbi2i 624 . . . 4 (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶})))
12 ssunsn 4764 . . . 4 (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐷}) ∪ {𝐶})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶})))
134, 9eqtr2i 2848 . . . . . 6 ((𝐵 ∪ {𝐷}) ∪ {𝐶}) = (𝐵 ∪ {𝐶, 𝐷})
1413eqeq2i 2837 . . . . 5 (𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶}) ↔ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))
1514orbi2i 909 . . . 4 ((𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = ((𝐵 ∪ {𝐷}) ∪ {𝐶})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))
1611, 12, 153bitri 299 . . 3 (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷})) ↔ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷})))
178, 16orbi12i 911 . 2 (((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ((𝐵 ∪ {𝐶}) ∪ {𝐷}))) ↔ ((𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))))
186, 7, 173bitri 299 1 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843   = wceq 1536  cun 3937  wss 3939  {csn 4570  {cpr 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-sn 4571  df-pr 4573
This theorem is referenced by:  sspr  4769  sstp  4770
  Copyright terms: Public domain W3C validator