MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn Structured version   Visualization version   GIF version

Theorem ssunsn 4763
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))

Proof of Theorem ssunsn
StepHypRef Expression
1 ssunsn2 4762 . 2 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ ((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))))
2 ancom 463 . . . 4 ((𝐵𝐴𝐴𝐵) ↔ (𝐴𝐵𝐵𝐴))
3 eqss 3984 . . . 4 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
42, 3bitr4i 280 . . 3 ((𝐵𝐴𝐴𝐵) ↔ 𝐴 = 𝐵)
5 ancom 463 . . . 4 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
6 eqss 3984 . . . 4 (𝐴 = (𝐵 ∪ {𝐶}) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
75, 6bitr4i 280 . . 3 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ 𝐴 = (𝐵 ∪ {𝐶}))
84, 7orbi12i 911 . 2 (((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
91, 8bitri 277 1 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843   = wceq 1537  cun 3936  wss 3938  {csn 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-sn 4570
This theorem is referenced by:  ssunpr  4767
  Copyright terms: Public domain W3C validator