HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stadd3i Structured version   Visualization version   GIF version

Theorem stadd3i 28297
Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
stm1add3.3 𝐶C
Assertion
Ref Expression
stadd3i (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))

Proof of Theorem stadd3i
StepHypRef Expression
1 stle.1 . . . . . 6 𝐴C
2 stcl 28265 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
43recnd 9924 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℂ)
5 stle.2 . . . . . 6 𝐵C
6 stcl 28265 . . . . . 6 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
75, 6mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
87recnd 9924 . . . 4 (𝑆 ∈ States → (𝑆𝐵) ∈ ℂ)
9 stm1add3.3 . . . . . 6 𝐶C
10 stcl 28265 . . . . . 6 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ∈ ℝ))
119, 10mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐶) ∈ ℝ)
1211recnd 9924 . . . 4 (𝑆 ∈ States → (𝑆𝐶) ∈ ℂ)
134, 8, 12addassd 9918 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1413eqeq1d 2611 . 2 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 ↔ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3))
15 eqcom 2616 . . . 4 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 ↔ 3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
167, 11readdcld 9925 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ∈ ℝ)
173, 16readdcld 9925 . . . . . 6 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ)
18 ltne 9985 . . . . . . 7 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3) → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1918ex 448 . . . . . 6 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2017, 19syl 17 . . . . 5 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2120necon2bd 2797 . . . 4 (𝑆 ∈ States → (3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
2215, 21syl5bi 230 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
23 1re 9895 . . . . . . . . . . 11 1 ∈ ℝ
2423, 23readdcli 9909 . . . . . . . . . 10 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
26 1red 9911 . . . . . . . . . 10 (𝑆 ∈ States → 1 ∈ ℝ)
27 stle1 28274 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
285, 27mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
29 stle1 28274 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ≤ 1))
309, 29mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐶) ≤ 1)
317, 11, 26, 26, 28, 30le2addd 10495 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ≤ (1 + 1))
3216, 25, 3, 31leadd2dd 10491 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
3332adantr 479 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
34 ltadd1 10344 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3534biimpd 217 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
363, 26, 25, 35syl3anc 1317 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3736imp 443 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1)))
38 readdcl 9875 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
393, 24, 38sylancl 692 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
4023, 24readdcli 9909 . . . . . . . . . 10 (1 + (1 + 1)) ∈ ℝ
4140a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + (1 + 1)) ∈ ℝ)
42 lelttr 9979 . . . . . . . . 9 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + (1 + 1)) ∈ ℝ ∧ (1 + (1 + 1)) ∈ ℝ) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4317, 39, 41, 42syl3anc 1317 . . . . . . . 8 (𝑆 ∈ States → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4443adantr 479 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4533, 37, 44mp2and 710 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1)))
46 df-3 10927 . . . . . . 7 3 = (2 + 1)
47 df-2 10926 . . . . . . . 8 2 = (1 + 1)
4847oveq1i 6537 . . . . . . 7 (2 + 1) = ((1 + 1) + 1)
49 ax-1cn 9850 . . . . . . . 8 1 ∈ ℂ
5049, 49, 49addassi 9904 . . . . . . 7 ((1 + 1) + 1) = (1 + (1 + 1))
5146, 48, 503eqtrri 2636 . . . . . 6 (1 + (1 + 1)) = 3
5245, 51syl6breq 4618 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3)
5352ex 448 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
5453con3d 146 . . 3 (𝑆 ∈ States → (¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → ¬ (𝑆𝐴) < 1))
55 stle1 28274 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
561, 55mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
57 leloe 9975 . . . . . 6 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
583, 23, 57sylancl 692 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
5956, 58mpbid 220 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
6059ord 390 . . 3 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
6122, 54, 603syld 57 . 2 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → (𝑆𝐴) = 1))
6214, 61sylbid 228 1 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5790  (class class class)co 6527  cr 9791  1c1 9793   + caddc 9795   < clt 9930  cle 9931  2c2 10917  3c3 10918   C cch 26976  Statescst 27009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-hilex 27046
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-2 10926  df-3 10927  df-icc 12009  df-sh 27254  df-ch 27268  df-st 28260
This theorem is referenced by:  golem2  28321
  Copyright terms: Public domain W3C validator