HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltr1i Structured version   Visualization version   GIF version

Theorem stcltr1i 28994
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltr1.1 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
stcltr1.2 𝐴C
stcltr1.3 𝐵C
Assertion
Ref Expression
stcltr1i (𝜑 → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem stcltr1i
StepHypRef Expression
1 stcltr1.1 . 2 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
2 stcltr1.2 . . 3 𝐴C
3 stcltr1.3 . . 3 𝐵C
4 fveq2 6150 . . . . . . 7 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
54eqeq1d 2623 . . . . . 6 (𝑥 = 𝐴 → ((𝑆𝑥) = 1 ↔ (𝑆𝐴) = 1))
65imbi1d 331 . . . . 5 (𝑥 = 𝐴 → (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) ↔ ((𝑆𝐴) = 1 → (𝑆𝑦) = 1)))
7 sseq1 3607 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
86, 7imbi12d 334 . . . 4 (𝑥 = 𝐴 → ((((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦) ↔ (((𝑆𝐴) = 1 → (𝑆𝑦) = 1) → 𝐴𝑦)))
9 fveq2 6150 . . . . . . 7 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
109eqeq1d 2623 . . . . . 6 (𝑦 = 𝐵 → ((𝑆𝑦) = 1 ↔ (𝑆𝐵) = 1))
1110imbi2d 330 . . . . 5 (𝑦 = 𝐵 → (((𝑆𝐴) = 1 → (𝑆𝑦) = 1) ↔ ((𝑆𝐴) = 1 → (𝑆𝐵) = 1)))
12 sseq2 3608 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
1311, 12imbi12d 334 . . . 4 (𝑦 = 𝐵 → ((((𝑆𝐴) = 1 → (𝑆𝑦) = 1) → 𝐴𝑦) ↔ (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵)))
148, 13rspc2v 3307 . . 3 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦) → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵)))
152, 3, 14mp2an 707 . 2 (∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦) → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵))
161, 15simplbiim 658 1 (𝜑 → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3556  cfv 5849  1c1 9884   C cch 27647  Statescst 27680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-iota 5812  df-fv 5857
This theorem is referenced by:  stcltr2i  28995  stcltrlem2  28997
  Copyright terms: Public domain W3C validator