HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltr2i Structured version   Visualization version   GIF version

Theorem stcltr2i 29439
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltr1.1 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
stcltr1.2 𝐴C
Assertion
Ref Expression
stcltr2i (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem stcltr2i
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑆𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1))
2 stcltr1.1 . . . 4 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
3 helch 28405 . . . 4 ℋ ∈ C
4 stcltr1.2 . . . 4 𝐴C
52, 3, 4stcltr1i 29438 . . 3 (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1) → ℋ ⊆ 𝐴))
61, 5syl5 34 . 2 (𝜑 → ((𝑆𝐴) = 1 → ℋ ⊆ 𝐴))
74chssii 28393 . . 3 𝐴 ⊆ ℋ
8 eqss 3755 . . 3 (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴))
97, 8mpbiran 991 . 2 (𝐴 = ℋ ↔ ℋ ⊆ 𝐴)
106, 9syl6ibr 242 1 (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  wral 3046  wss 3711  cfv 6045  1c1 10125  chil 28081   C cch 28091  Statescst 28124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-i2m1 10192  ax-1ne0 10193  ax-rrecex 10196  ax-cnre 10197  ax-hilex 28161  ax-hfvadd 28162  ax-hv0cl 28165  ax-hfvmul 28167
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-map 8021  df-nn 11209  df-hlim 28134  df-sh 28369  df-ch 28383
This theorem is referenced by:  stcltrlem1  29440
  Copyright terms: Public domain W3C validator