HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltr2i Structured version   Visualization version   GIF version

Theorem stcltr2i 28980
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltr1.1 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
stcltr1.2 𝐴C
Assertion
Ref Expression
stcltr2i (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem stcltr2i
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑆𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1))
2 stcltr1.1 . . . 4 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
3 helch 27946 . . . 4 ℋ ∈ C
4 stcltr1.2 . . . 4 𝐴C
52, 3, 4stcltr1i 28979 . . 3 (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1) → ℋ ⊆ 𝐴))
61, 5syl5 34 . 2 (𝜑 → ((𝑆𝐴) = 1 → ℋ ⊆ 𝐴))
74chssii 27934 . . 3 𝐴 ⊆ ℋ
8 eqss 3598 . . 3 (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴))
97, 8mpbiran 952 . 2 (𝐴 = ℋ ↔ ℋ ⊆ 𝐴)
106, 9syl6ibr 242 1 (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3555  cfv 5847  1c1 9881  chil 27622   C cch 27632  Statescst 27665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-i2m1 9948  ax-1ne0 9949  ax-rrecex 9952  ax-cnre 9953  ax-hilex 27702  ax-hfvadd 27703  ax-hv0cl 27706  ax-hfvmul 27708
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-map 7804  df-nn 10965  df-hlim 27675  df-sh 27910  df-ch 27924
This theorem is referenced by:  stcltrlem1  28981
  Copyright terms: Public domain W3C validator