MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmopn Structured version   Visualization version   GIF version

Theorem stdbdmopn 22233
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
stdbdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem stdbdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 11784 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 764 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 1063 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
42, 3ifcld 4103 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*)
5 rpre 11783 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
65ad2antll 764 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
7 rpgt0 11788 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
87ad2antll 764 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
9 simpl3 1064 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
10 breq2 4617 . . . . . . . . 9 (𝑟 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑟 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
11 breq2 4617 . . . . . . . . 9 (𝑅 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑅 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
1210, 11ifboth 4096 . . . . . . . 8 ((0 < 𝑟 ∧ 0 < 𝑅) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
138, 9, 12syl2anc 692 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
14 0xr 10030 . . . . . . . 8 0 ∈ ℝ*
15 xrltle 11926 . . . . . . . 8 ((0 ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1614, 4, 15sylancr 694 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1713, 16mpd 15 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅))
18 xrmin1 11951 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
192, 3, 18syl2anc 692 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
20 xrrege0 11948 . . . . . 6 (((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ if(𝑟𝑅, 𝑟, 𝑅) ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
214, 6, 17, 19, 20syl22anc 1324 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
2221, 13elrpd 11813 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+)
23 simprl 793 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
24 xrmin2 11952 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
252, 3, 24syl2anc 692 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
2623, 4, 253jca 1240 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅))
27 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2827stdbdbl 22232 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
2926, 28syldan 487 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
3029eqcomd 2627 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
31 breq1 4616 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑠𝑟 ↔ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟))
32 oveq2 6612 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
33 oveq2 6612 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
3432, 33eqeq12d 2636 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅))))
3531, 34anbi12d 746 . . . . 5 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))))
3635rspcev 3295 . . . 4 ((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+ ∧ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3722, 19, 30, 36syl12anc 1321 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3837ralrimivva 2965 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
39 simp1 1059 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
4027stdbdxmet 22230 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
41 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
42 eqid 2621 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4341, 42metequiv2 22225 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4439, 40, 43syl2anc 692 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4538, 44mpd 15 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  ifcif 4058   class class class wbr 4613  cfv 5847  (class class class)co 6604  cmpt2 6606  cr 9879  0cc0 9880  *cxr 10017   < clt 10018  cle 10019  +crp 11776  ∞Metcxmt 19650  ballcbl 19652  MetOpencmopn 19655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-bl 19660  df-mopn 19661  df-bases 20622
This theorem is referenced by:  mopnex  22234  xlebnum  22672
  Copyright terms: Public domain W3C validator