Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem5 Structured version   Visualization version   GIF version

Theorem stirlinglem5 39602
Description: If 𝑇 is between 0 and 1, then a series (without alternating negative and positive terms) is given that converges to log (1+T)/(1-T) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem5.1 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
stirlinglem5.2 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
stirlinglem5.3 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
stirlinglem5.4 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
stirlinglem5.5 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
stirlinglem5.6 (𝜑𝑇 ∈ ℝ+)
stirlinglem5.7 (𝜑 → (abs‘𝑇) < 1)
Assertion
Ref Expression
stirlinglem5 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Distinct variable groups:   𝜑,𝑗   𝑇,𝑗
Allowed substitution hints:   𝐷(𝑗)   𝐸(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)

Proof of Theorem stirlinglem5
Dummy variables 𝑖 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11667 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11352 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stirlinglem5.1 . . . . . . . . 9 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
43a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
5 1cnd 10000 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
65negcld 10323 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → -1 ∈ ℂ)
7 nnm1nn0 11278 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
87adantl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
96, 8expcld 12948 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (-1↑(𝑗 − 1)) ∈ ℂ)
10 nncn 10972 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
1110adantl 482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
12 stirlinglem5.6 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
1312rpred 11816 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
1413recnd 10012 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℂ)
1514adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 ∈ ℂ)
16 nnnn0 11243 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
1716adantl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
1815, 17expcld 12948 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℂ)
19 nnne0 10997 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
2019adantl 482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ≠ 0)
219, 11, 18, 20div32d 10768 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
225, 15pncan2d 10338 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((1 + 𝑇) − 1) = 𝑇)
2322eqcomd 2627 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 = ((1 + 𝑇) − 1))
2423oveq1d 6619 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (((1 + 𝑇) − 1)↑𝑗))
2524oveq2d 6620 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2621, 25eqtr3d 2657 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2726mpteq2dva 4704 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
284, 27eqtrd 2655 . . . . . . 7 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
2928seqeq3d 12749 . . . . . 6 (𝜑 → seq1( + , 𝐷) = seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))))
30 1cnd 10000 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
3130, 14addcld 10003 . . . . . . . . . 10 (𝜑 → (1 + 𝑇) ∈ ℂ)
32 eqid 2621 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 22484 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ) → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
3430, 31, 33syl2anc 692 . . . . . . . . 9 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
35 1m1e0 11033 . . . . . . . . . . . . . 14 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 − 1) = 0)
3736oveq1d 6619 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (0 − 𝑇))
3830, 30, 14subsub4d 10367 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (1 − (1 + 𝑇)))
39 df-neg 10213 . . . . . . . . . . . . . 14 -𝑇 = (0 − 𝑇)
4039eqcomi 2630 . . . . . . . . . . . . 13 (0 − 𝑇) = -𝑇
4140a1i 11 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑇) = -𝑇)
4237, 38, 413eqtr3d 2663 . . . . . . . . . . 11 (𝜑 → (1 − (1 + 𝑇)) = -𝑇)
4342fveq2d 6152 . . . . . . . . . 10 (𝜑 → (abs‘(1 − (1 + 𝑇))) = (abs‘-𝑇))
4414absnegd 14122 . . . . . . . . . . 11 (𝜑 → (abs‘-𝑇) = (abs‘𝑇))
45 stirlinglem5.7 . . . . . . . . . . 11 (𝜑 → (abs‘𝑇) < 1)
4644, 45eqbrtrd 4635 . . . . . . . . . 10 (𝜑 → (abs‘-𝑇) < 1)
4743, 46eqbrtrd 4635 . . . . . . . . 9 (𝜑 → (abs‘(1 − (1 + 𝑇))) < 1)
4834, 47eqbrtrd 4635 . . . . . . . 8 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) < 1)
49 cnxmet 22486 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51 1red 9999 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
5251rexrd 10033 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ*)
53 elbl2 22105 . . . . . . . . 9 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ)) → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5450, 52, 30, 31, 53syl22anc 1324 . . . . . . . 8 (𝜑 → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5548, 54mpbird 247 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1))
56 eqid 2621 . . . . . . . 8 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
5756logtayl2 24308 . . . . . . 7 ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5855, 57syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5929, 58eqbrtrd 4635 . . . . 5 (𝜑 → seq1( + , 𝐷) ⇝ (log‘(1 + 𝑇)))
60 seqex 12743 . . . . . 6 seq1( + , 𝐹) ∈ V
6160a1i 11 . . . . 5 (𝜑 → seq1( + , 𝐹) ∈ V)
62 stirlinglem5.2 . . . . . . . 8 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
6362a1i 11 . . . . . . 7 (𝜑𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
6463seqeq3d 12749 . . . . . 6 (𝜑 → seq1( + , 𝐸) = seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))))
65 logtayl 24306 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (abs‘𝑇) < 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6614, 45, 65syl2anc 692 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6764, 66eqbrtrd 4635 . . . . 5 (𝜑 → seq1( + , 𝐸) ⇝ -(log‘(1 − 𝑇)))
68 simpr 477 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6968, 1syl6eleq 2708 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
703a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
71 oveq1 6611 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑗 − 1) = (𝑛 − 1))
7271oveq2d 6620 . . . . . . . . . 10 (𝑗 = 𝑛 → (-1↑(𝑗 − 1)) = (-1↑(𝑛 − 1)))
73 oveq2 6612 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑇𝑗) = (𝑇𝑛))
74 id 22 . . . . . . . . . . 11 (𝑗 = 𝑛𝑗 = 𝑛)
7573, 74oveq12d 6622 . . . . . . . . . 10 (𝑗 = 𝑛 → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
7672, 75oveq12d 6622 . . . . . . . . 9 (𝑗 = 𝑛 → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
7776adantl 482 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) ∧ 𝑗 = 𝑛) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
78 elfznn 12312 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
7978adantl 482 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
80 1cnd 10000 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℂ)
8180negcld 10323 . . . . . . . . . . 11 (𝑛 ∈ ℕ → -1 ∈ ℂ)
82 nnm1nn0 11278 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8381, 82expcld 12948 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑(𝑛 − 1)) ∈ ℂ)
8479, 83syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (-1↑(𝑛 − 1)) ∈ ℂ)
8514ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑇 ∈ ℂ)
8679nnnn0d 11295 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ0)
8785, 86expcld 12948 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑇𝑛) ∈ ℂ)
8879nncnd 10980 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℂ)
8979nnne0d 11009 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ≠ 0)
9087, 88, 89divcld 10745 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
9184, 90mulcld 10004 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
9270, 77, 79, 91fvmptd 6245 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
9392, 91eqeltrd 2698 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) ∈ ℂ)
94 addcl 9962 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (𝑛 + 𝑖) ∈ ℂ)
9594adantl 482 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (𝑛 + 𝑖) ∈ ℂ)
9669, 93, 95seqcl 12761 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐷)‘𝑘) ∈ ℂ)
9762a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
9875adantl 482 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) ∧ 𝑗 = 𝑛) → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
9997, 98, 79, 90fvmptd 6245 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
10099, 90eqeltrd 2698 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) ∈ ℂ)
10169, 100, 95seqcl 12761 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐸)‘𝑘) ∈ ℂ)
102 simpll 789 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
103 stirlinglem5.3 . . . . . . . . . 10 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
104103a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗))))
10576, 75oveq12d 6622 . . . . . . . . . 10 (𝑗 = 𝑛 → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
106105adantl 482 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
107 simpr 477 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
10883adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
10914adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑇 ∈ ℂ)
110107nnnn0d 11295 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
111109, 110expcld 12948 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
112107nncnd 10980 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
113107nnne0d 11009 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
114111, 112, 113divcld 10745 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
115108, 114mulcld 10004 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
116115, 114addcld 10003 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
117104, 106, 107, 116fvmptd 6245 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
1183a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
11976adantl 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
120118, 119, 107, 115fvmptd 6245 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
121120eqcomd 2627 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (𝐷𝑛))
12262a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
12375adantl 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
124122, 123, 107, 114fvmptd 6245 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
125124eqcomd 2627 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) = (𝐸𝑛))
126121, 125oveq12d 6622 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((𝐷𝑛) + (𝐸𝑛)))
127117, 126eqtrd 2655 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
128102, 79, 127syl2anc 692 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
12969, 93, 100, 128seradd 12783 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = ((seq1( + , 𝐷)‘𝑘) + (seq1( + , 𝐸)‘𝑘)))
1301, 2, 59, 61, 67, 96, 101, 129climadd 14296 . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))))
131 1rp 11780 . . . . . . . . 9 1 ∈ ℝ+
132131a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
133132, 12rpaddcld 11831 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ ℝ+)
134133rpne0d 11821 . . . . . 6 (𝜑 → (1 + 𝑇) ≠ 0)
13531, 134logcld 24221 . . . . 5 (𝜑 → (log‘(1 + 𝑇)) ∈ ℂ)
13630, 14subcld 10336 . . . . . 6 (𝜑 → (1 − 𝑇) ∈ ℂ)
13713, 51absltd 14102 . . . . . . . . . 10 (𝜑 → ((abs‘𝑇) < 1 ↔ (-1 < 𝑇𝑇 < 1)))
13845, 137mpbid 222 . . . . . . . . 9 (𝜑 → (-1 < 𝑇𝑇 < 1))
139138simprd 479 . . . . . . . 8 (𝜑𝑇 < 1)
14013, 139gtned 10116 . . . . . . 7 (𝜑 → 1 ≠ 𝑇)
14130, 14, 140subne0d 10345 . . . . . 6 (𝜑 → (1 − 𝑇) ≠ 0)
142136, 141logcld 24221 . . . . 5 (𝜑 → (log‘(1 − 𝑇)) ∈ ℂ)
143135, 142negsubd 10342 . . . 4 (𝜑 → ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
144130, 143breqtrd 4639 . . 3 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
145 nn0uz 11666 . . . 4 0 = (ℤ‘0)
146 0zd 11333 . . . 4 (𝜑 → 0 ∈ ℤ)
147 stirlinglem5.5 . . . . . 6 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
148 2nn0 11253 . . . . . . . . 9 2 ∈ ℕ0
149148a1i 11 . . . . . . . 8 (𝑗 ∈ ℕ0 → 2 ∈ ℕ0)
150 id 22 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℕ0)
151149, 150nn0mulcld 11300 . . . . . . 7 (𝑗 ∈ ℕ0 → (2 · 𝑗) ∈ ℕ0)
152 nn0p1nn 11276 . . . . . . 7 ((2 · 𝑗) ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
153151, 152syl 17 . . . . . 6 (𝑗 ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
154147, 153fmpti 6339 . . . . 5 𝐺:ℕ0⟶ℕ
155154a1i 11 . . . 4 (𝜑𝐺:ℕ0⟶ℕ)
156 2re 11034 . . . . . . . . 9 2 ∈ ℝ
157156a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ)
158 nn0re 11245 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
159157, 158remulcld 10014 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℝ)
160 1red 9999 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℝ)
161158, 160readdcld 10013 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
162157, 161remulcld 10014 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℝ)
163 2rp 11781 . . . . . . . . 9 2 ∈ ℝ+
164163a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ+)
165158ltp1d 10898 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 < (𝑘 + 1))
166158, 161, 164, 165ltmul2dd 11872 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) < (2 · (𝑘 + 1)))
167159, 162, 160, 166ltadd1dd 10582 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) < ((2 · (𝑘 + 1)) + 1))
168147a1i 11 . . . . . . 7 (𝑘 ∈ ℕ0𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)))
169 simpr 477 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → 𝑗 = 𝑘)
170169oveq2d 6620 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
171170oveq1d 6619 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
172 id 22 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
173 2cnd 11037 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
174 nn0cn 11246 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
175173, 174mulcld 10004 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℂ)
176 1cnd 10000 . . . . . . . 8 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
177175, 176addcld 10003 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
178168, 171, 172, 177fvmptd 6245 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
179 simpr 477 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
180179oveq2d 6620 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → (2 · 𝑗) = (2 · (𝑘 + 1)))
181180oveq1d 6619 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
182 peano2nn0 11277 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
183174, 176addcld 10003 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
184173, 183mulcld 10004 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℂ)
185184, 176addcld 10003 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · (𝑘 + 1)) + 1) ∈ ℂ)
186168, 181, 182, 185fvmptd 6245 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺‘(𝑘 + 1)) = ((2 · (𝑘 + 1)) + 1))
187167, 178, 1863brtr4d 4645 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
188187adantl 482 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
189 eldifi 3710 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℕ)
190189adantl 482 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ)
191 1cnd 10000 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 1 ∈ ℂ)
192191negcld 10323 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -1 ∈ ℂ)
193189, 82syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ0)
194192, 193expcld 12948 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) ∈ ℂ)
195194adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) ∈ ℂ)
19614adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑇 ∈ ℂ)
197190nnnn0d 11295 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ0)
198196, 197expcld 12948 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝑇𝑛) ∈ ℂ)
199190nncnd 10980 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℂ)
200190nnne0d 11009 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ≠ 0)
201198, 199, 200divcld 10745 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
202195, 201mulcld 10004 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
203202, 201addcld 10003 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
204105, 103fvmptg 6237 . . . . . 6 ((𝑛 ∈ ℕ ∧ (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
205190, 203, 204syl2anc 692 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
206 eldifn 3711 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 ∈ ran 𝐺)
207 0nn0 11251 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
208 1nn0 11252 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
209148, 208num0h 11453 . . . . . . . . . . . . . . . 16 1 = ((2 · 0) + 1)
210 oveq2 6612 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 0 → (2 · 𝑗) = (2 · 0))
211210oveq1d 6619 . . . . . . . . . . . . . . . . . 18 (𝑗 = 0 → ((2 · 𝑗) + 1) = ((2 · 0) + 1))
212211eqeq2d 2631 . . . . . . . . . . . . . . . . 17 (𝑗 = 0 → (1 = ((2 · 𝑗) + 1) ↔ 1 = ((2 · 0) + 1)))
213212rspcev 3295 . . . . . . . . . . . . . . . 16 ((0 ∈ ℕ0 ∧ 1 = ((2 · 0) + 1)) → ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
214207, 209, 213mp2an 707 . . . . . . . . . . . . . . 15 𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)
215 ax-1cn 9938 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
216147elrnmpt 5332 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ → (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)))
217215, 216ax-mp 5 . . . . . . . . . . . . . . 15 (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
218214, 217mpbir 221 . . . . . . . . . . . . . 14 1 ∈ ran 𝐺
219218a1i 11 . . . . . . . . . . . . 13 (𝑛 = 1 → 1 ∈ ran 𝐺)
220 eleq1 2686 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 ∈ ran 𝐺 ↔ 1 ∈ ran 𝐺))
221219, 220mpbird 247 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 ∈ ran 𝐺)
222206, 221nsyl 135 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 = 1)
223 nn1m1nn 10984 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
224189, 223syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
225224ord 392 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 𝑛 = 1 → (𝑛 − 1) ∈ ℕ))
226222, 225mpd 15 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ)
227 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑗
228 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
229147, 228nfcxfr 2759 . . . . . . . . . . . . . . . . . . 19 𝑗𝐺
230229nfrn 5328 . . . . . . . . . . . . . . . . . 18 𝑗ran 𝐺
231227, 230nfdif 3709 . . . . . . . . . . . . . . . . 17 𝑗(ℕ ∖ ran 𝐺)
232231nfcri 2755 . . . . . . . . . . . . . . . 16 𝑗 𝑛 ∈ (ℕ ∖ ran 𝐺)
233147elrnmpt 5332 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1)))
234206, 233mtbid 314 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
235 ralnex 2986 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1) ↔ ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
236234, 235sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1))
237236r19.21bi 2927 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ¬ 𝑛 = ((2 · 𝑗) + 1))
238237neqned 2797 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → 𝑛 ≠ ((2 · 𝑗) + 1))
239238necomd 2845 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
240239adantlr 750 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
241 simplr 791 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
242 simpr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
243189ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑛 ∈ ℕ)
244156a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ)
245 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
246245zred 11426 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℝ)
247244, 246remulcld 10014 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) ∈ ℝ)
248 0red 9985 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 0 ∈ ℝ)
249 1red 9999 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℝ)
250 2cnd 11037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℂ)
251246recnd 10012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
252250, 251mulcomd 10005 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) = (𝑗 · 2))
253 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
254 elnn0z 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
255253, 254sylnib 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
256 nan 603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) ↔ (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗))
257255, 256mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗)
258257anabss1 854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 0 ≤ 𝑗)
259246, 248ltnled 10128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 < 0 ↔ ¬ 0 ≤ 𝑗))
260258, 259mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 < 0)
261163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ+)
262261rpregt0d 11822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 ∈ ℝ ∧ 0 < 2))
263 mulltgt0 38664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑗 ∈ ℝ ∧ 𝑗 < 0) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑗 · 2) < 0)
264246, 260, 262, 263syl21anc 1322 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 · 2) < 0)
265252, 264eqbrtrd 4635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) < 0)
266247, 248, 249, 265ltadd1dd 10582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < (0 + 1))
267 1cnd 10000 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℂ)
268267addid2d 10181 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (0 + 1) = 1)
269266, 268breqtrd 4639 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < 1)
270247, 249readdcld 10013 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ∈ ℝ)
271270, 249ltnled 10128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (((2 · 𝑗) + 1) < 1 ↔ ¬ 1 ≤ ((2 · 𝑗) + 1)))
272269, 271mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 1 ≤ ((2 · 𝑗) + 1))
273 nnge1 10990 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑗) + 1) ∈ ℕ → 1 ≤ ((2 · 𝑗) + 1))
274272, 273nsyl 135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
275274adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
276 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) = 𝑛)
277 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → 𝑛 ∈ ℕ)
278276, 277eqeltrd 2698 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
279278adantll 749 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
280275, 279mtand 690 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
281280neqned 2797 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 𝑛)
282241, 242, 243, 281syl21anc 1322 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
283240, 282pm2.61dan 831 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ((2 · 𝑗) + 1) ≠ 𝑛)
284283neneqd 2795 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
285284ex 450 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑗 ∈ ℤ → ¬ ((2 · 𝑗) + 1) = 𝑛))
286232, 285ralrimi 2951 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛)
287 ralnex 2986 . . . . . . . . . . . . . . 15 (∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛 ↔ ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
288286, 287sylib 208 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
289189nnzd 11425 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℤ)
290 odd2np1 14989 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
291289, 290syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
292288, 291mtbird 315 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ¬ 2 ∥ 𝑛)
293292notnotrd 128 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ 𝑛)
294189nncnd 10980 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℂ)
295294, 191npcand 10340 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ((𝑛 − 1) + 1) = 𝑛)
296293, 295breqtrrd 4641 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ ((𝑛 − 1) + 1))
297193nn0zd 11424 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℤ)
298 oddp1even 14992 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℤ → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
299297, 298syl 17 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
300296, 299mpbird 247 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 2 ∥ (𝑛 − 1))
301 oexpneg 14993 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ ∧ ¬ 2 ∥ (𝑛 − 1)) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
302191, 226, 300, 301syl3anc 1323 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
303 1exp 12829 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℤ → (1↑(𝑛 − 1)) = 1)
304297, 303syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (1↑(𝑛 − 1)) = 1)
305304negeqd 10219 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -(1↑(𝑛 − 1)) = -1)
306302, 305eqtrd 2655 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -1)
307306adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) = -1)
308307oveq1d 6619 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (-1 · ((𝑇𝑛) / 𝑛)))
309308oveq1d 6619 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
310201mulm1d 10426 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1 · ((𝑇𝑛) / 𝑛)) = -((𝑇𝑛) / 𝑛))
311310oveq1d 6619 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)))
312201negcld 10323 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → -((𝑇𝑛) / 𝑛) ∈ ℂ)
313312, 201addcomd 10182 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)) = (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)))
314201negidd 10326 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)) = 0)
315311, 313, 3143eqtrd 2659 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = 0)
316205, 309, 3153eqtrd 2659 . . . 4 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = 0)
317117, 116eqeltrd 2698 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
318103a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗))))
319 simpr 477 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → 𝑗 = ((2 · 𝑘) + 1))
320319oveq1d 6619 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑗 − 1) = (((2 · 𝑘) + 1) − 1))
321320oveq2d 6620 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (-1↑(𝑗 − 1)) = (-1↑(((2 · 𝑘) + 1) − 1)))
322319oveq2d 6620 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑇𝑗) = (𝑇↑((2 · 𝑘) + 1)))
323322, 319oveq12d 6622 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((𝑇𝑗) / 𝑗) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
324321, 323oveq12d 6622 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
325324, 323oveq12d 6622 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
326148a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ0)
327 simpr 477 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
328326, 327nn0mulcld 11300 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
329 nn0p1nn 11276 . . . . . . . 8 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
330328, 329syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
331176negcld 10323 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
332175, 176pncand 10337 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
333148a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → 2 ∈ ℕ0)
334333, 172nn0mulcld 11300 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
335332, 334eqeltrd 2698 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) ∈ ℕ0)
336331, 335expcld 12948 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
337336adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
33814adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑇 ∈ ℂ)
339208a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
340328, 339nn0addcld 11299 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ0)
341338, 340expcld 12948 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝑇↑((2 · 𝑘) + 1)) ∈ ℂ)
342 2cnd 11037 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℂ)
343174adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
344342, 343mulcld 10004 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℂ)
345 1cnd 10000 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
346344, 345addcld 10003 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℂ)
347 0red 9985 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℝ)
348156a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℝ)
349158adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
350348, 349remulcld 10014 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℝ)
351 1red 9999 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℝ)
352 0le2 11055 . . . . . . . . . . . . . 14 0 ≤ 2
353352a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 2)
354327nn0ge0d 11298 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
355348, 349, 353, 354mulge0d 10548 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (2 · 𝑘))
356 0lt1 10494 . . . . . . . . . . . . 13 0 < 1
357356a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 < 1)
358350, 351, 355, 357addgegt0d 10545 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 < ((2 · 𝑘) + 1))
359347, 358gtned 10116 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≠ 0)
360341, 346, 359divcld 10745 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) ∈ ℂ)
361337, 360mulcld 10004 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
362361, 360addcld 10003 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
363318, 325, 330, 362fvmptd 6245 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘((2 · 𝑘) + 1)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
364332adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
365364oveq2d 6620 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = (-1↑(2 · 𝑘)))
366 nn0z 11344 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
367 m1expeven 12847 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (-1↑(2 · 𝑘)) = 1)
368366, 367syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = 1)
369368adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = 1)
370365, 369eqtrd 2655 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = 1)
371370oveq1d 6619 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
372360mulid2d 10002 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
373371, 372eqtrd 2655 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
374373oveq1d 6619 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
3753602timesd 11219 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
376341, 346, 359divrec2d 10749 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
377376oveq2d 6620 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
378374, 375, 3773eqtr2d 2661 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
379363, 378eqtr2d 2656 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) = (𝐹‘((2 · 𝑘) + 1)))
380 stirlinglem5.4 . . . . . . 7 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
381380a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))))))
382 simpr 477 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
383382oveq2d 6620 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
384383oveq1d 6619 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
385384oveq2d 6620 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (1 / ((2 · 𝑗) + 1)) = (1 / ((2 · 𝑘) + 1)))
386384oveq2d 6620 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝑇↑((2 · 𝑗) + 1)) = (𝑇↑((2 · 𝑘) + 1)))
387385, 386oveq12d 6622 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
388387oveq2d 6620 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
389346, 359reccld 10738 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
390389, 341mulcld 10004 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))) ∈ ℂ)
391342, 390mulcld 10004 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) ∈ ℂ)
392381, 388, 327, 391fvmptd 6245 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
393208a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℕ0)
394334, 393nn0addcld 11299 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
395168, 171, 172, 394fvmptd 6245 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
396395adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((2 · 𝑘) + 1))
397396fveq2d 6152 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝐺𝑘)) = (𝐹‘((2 · 𝑘) + 1)))
398379, 392, 3973eqtr4d 2665 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
399145, 1, 146, 2, 155, 188, 316, 317, 398isercoll2 14333 . . 3 (𝜑 → (seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))) ↔ seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇)))))
400144, 399mpbird 247 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
40151, 13resubcld 10402 . . . 4 (𝜑 → (1 − 𝑇) ∈ ℝ)
40214subidd 10324 . . . . . 6 (𝜑 → (𝑇𝑇) = 0)
403402eqcomd 2627 . . . . 5 (𝜑 → 0 = (𝑇𝑇))
40413, 51, 13, 139ltsub1dd 10583 . . . . 5 (𝜑 → (𝑇𝑇) < (1 − 𝑇))
405403, 404eqbrtrd 4635 . . . 4 (𝜑 → 0 < (1 − 𝑇))
406401, 405elrpd 11813 . . 3 (𝜑 → (1 − 𝑇) ∈ ℝ+)
407133, 406relogdivd 24276 . 2 (𝜑 → (log‘((1 + 𝑇) / (1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
408400, 407breqtrrd 4641 1 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cdif 3552   class class class wbr 4613  cmpt 4673  ran crn 5075  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  *cxr 10017   < clt 10018  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  +crp 11776  ...cfz 12268  seqcseq 12741  cexp 12800  abscabs 13908  cli 14149  cdvds 14907  ∞Metcxmt 19650  ballcbl 19652  logclog 24205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-tan 14727  df-pi 14728  df-dvds 14908  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-ulm 24035  df-log 24207
This theorem is referenced by:  stirlinglem6  39603
  Copyright terms: Public domain W3C validator