![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 487 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: opelopabt 5016 ordelinel 5863 ordelinelOLD 5864 nelrnfvne 6393 omass 7705 nnmass 7749 f1imaeng 8057 genpass 9869 adddir 10069 le2tri3i 10205 addsub12 10332 subdir 10502 ltaddsub 10540 leaddsub 10542 div12 10745 xmulass 12155 fldiv2 12700 modsubdir 12779 digit2 13037 muldivbinom2 13087 ccatass 13406 ccatw2s1cl 13443 ccatw2s1lenOLD 13445 repswcshw 13604 s3tpop 13700 absdiflt 14101 absdifle 14102 binomrisefac 14817 cos01gt0 14965 rpnnen2lem4 14990 rpnnen2lem7 14993 sadass 15240 lubub 17166 lubl 17167 reslmhm2b 19102 ipcl 20026 ma1repveval 20425 mp2pm2mplem5 20663 opnneiss 20970 llyi 21325 nllyi 21326 cfiluweak 22146 cniccibl 23652 ply1term 24005 explog 24385 logrec 24546 usgredgop 26110 usgr2v1e2w 26189 cusgrsizeinds 26404 clwwlknonex2 27084 4cycl2vnunb 27270 frrusgrord0lem 27319 frrusgrord0 27320 numclwwlk7 27378 lnocoi 27740 hvaddsubass 28026 hvmulcan2 28058 hhssabloilem 28246 hhssnv 28249 homco1 28788 homulass 28789 hoadddir 28791 hoaddsubass 28802 hosubsub4 28805 kbmul 28942 lnopmulsubi 28963 mdsl3 29303 cdj3lem2 29422 probmeasb 30620 signswmnd 30762 bnj563 30939 fnessex 32466 cnicciblnc 33611 incsequz2 33675 ltrncnvatb 35742 jm2.17a 37844 lnrfgtr 38007 prsssprel 42063 dignnld 42722 |
Copyright terms: Public domain | W3C validator |