Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Structured version   Visualization version   GIF version

Theorem stoweid 40598
Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1 𝑡𝐹
stoweid.2 𝑡𝜑
stoweid.3 𝐾 = (topGen‘ran (,))
stoweid.4 (𝜑𝐽 ∈ Comp)
stoweid.5 𝑇 = 𝐽
stoweid.6 𝐶 = (𝐽 Cn 𝐾)
stoweid.7 (𝜑𝐴𝐶)
stoweid.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweid.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweid.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweid.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
stoweid.12 (𝜑𝐹𝐶)
stoweid.13 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweid (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   ,𝐸,𝑟,𝑥   ,𝐹,𝑟,𝑥   𝑇,,𝑟,𝑥   𝜑,,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,,𝑟)   𝐹(𝑡)   𝐽(𝑥,𝑔,)   𝐾(𝑥,𝑓,𝑔,,𝑟)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 476 . . . 4 ((𝜑𝑇 = ∅) → 𝑇 = ∅)
2 stoweid.10 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32ralrimiva 2995 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴)
4 1re 10077 . . . . . 6 1 ∈ ℝ
5 id 22 . . . . . . . . 9 (𝑥 = 1 → 𝑥 = 1)
65mpteq2dv 4778 . . . . . . . 8 (𝑥 = 1 → (𝑡𝑇𝑥) = (𝑡𝑇 ↦ 1))
76eleq1d 2715 . . . . . . 7 (𝑥 = 1 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇 ↦ 1) ∈ 𝐴))
87rspccv 3337 . . . . . 6 (∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴 → (1 ∈ ℝ → (𝑡𝑇 ↦ 1) ∈ 𝐴))
93, 4, 8mpisyl 21 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
109adantr 480 . . . 4 ((𝜑𝑇 = ∅) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
111, 10stoweidlem9 40544 . . 3 ((𝜑𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
12 stoweid.1 . . . 4 𝑡𝐹
13 nfv 1883 . . . . 5 𝑓𝜑
14 nfv 1883 . . . . 5 𝑓 ¬ 𝑇 = ∅
1513, 14nfan 1868 . . . 4 𝑓(𝜑 ∧ ¬ 𝑇 = ∅)
16 stoweid.2 . . . . 5 𝑡𝜑
17 nfv 1883 . . . . 5 𝑡 ¬ 𝑇 = ∅
1816, 17nfan 1868 . . . 4 𝑡(𝜑 ∧ ¬ 𝑇 = ∅)
19 eqid 2651 . . . 4 (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
20 stoweid.3 . . . 4 𝐾 = (topGen‘ran (,))
21 stoweid.5 . . . 4 𝑇 = 𝐽
22 stoweid.4 . . . . 5 (𝜑𝐽 ∈ Comp)
2322adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐽 ∈ Comp)
24 stoweid.6 . . . 4 𝐶 = (𝐽 Cn 𝐾)
25 stoweid.7 . . . . 5 (𝜑𝐴𝐶)
2625adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐴𝐶)
27 stoweid.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28273adant1r 1359 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
29 stoweid.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
30293adant1r 1359 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
312adantlr 751 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32 stoweid.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
3332adantlr 751 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
34 stoweid.12 . . . . 5 (𝜑𝐹𝐶)
3534adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐹𝐶)
36 stoweid.13 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
37 4re 11135 . . . . . . . . 9 4 ∈ ℝ
38 4pos 11154 . . . . . . . . 9 0 < 4
3937, 38elrpii 11873 . . . . . . . 8 4 ∈ ℝ+
4039a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
4140rpreccld 11920 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ+)
4236, 41ifcld 4164 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
4342adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
44 neqne 2831 . . . . 5 𝑇 = ∅ → 𝑇 ≠ ∅)
4544adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝑇 ≠ ∅)
4636rpred 11910 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
47 4ne0 11155 . . . . . . . . 9 4 ≠ 0
4837, 47rereccli 10828 . . . . . . . 8 (1 / 4) ∈ ℝ
4948a1i 11 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ)
5046, 49ifcld 4164 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
51 3re 11132 . . . . . . . 8 3 ∈ ℝ
52 3ne0 11153 . . . . . . . 8 3 ≠ 0
5351, 52rereccli 10828 . . . . . . 7 (1 / 3) ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → (1 / 3) ∈ ℝ)
5536rpxrd 11911 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
5641rpxrd 11911 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ*)
57 xrmin2 12047 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
5855, 56, 57syl2anc 694 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
59 3lt4 11235 . . . . . . . 8 3 < 4
60 3pos 11152 . . . . . . . . 9 0 < 3
6151, 37, 60, 38ltrecii 10978 . . . . . . . 8 (3 < 4 ↔ (1 / 4) < (1 / 3))
6259, 61mpbi 220 . . . . . . 7 (1 / 4) < (1 / 3)
6362a1i 11 . . . . . 6 (𝜑 → (1 / 4) < (1 / 3))
6450, 49, 54, 58, 63lelttrd 10233 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6564adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6612, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 43, 45, 65stoweidlem62 40597 . . 3 ((𝜑 ∧ ¬ 𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
6711, 66pm2.61dan 849 . 2 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
68 nfv 1883 . . . . 5 𝑡 𝑓𝐴
6916, 68nfan 1868 . . . 4 𝑡(𝜑𝑓𝐴)
70 xrmin1 12046 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7155, 56, 70syl2anc 694 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7271ad2antrr 762 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7325ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐴𝐶)
74 simplr 807 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐴)
7573, 74sseldd 3637 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐶)
7620, 21, 24, 75fcnre 39498 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
77 simpr 476 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
7876, 77jca 553 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓:𝑇⟶ℝ ∧ 𝑡𝑇))
79 ffvelrn 6397 . . . . . . . . 9 ((𝑓:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
80 recn 10064 . . . . . . . . 9 ((𝑓𝑡) ∈ ℝ → (𝑓𝑡) ∈ ℂ)
8178, 79, 803syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℂ)
8234ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹𝐶)
8320, 21, 24, 82fcnre 39498 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
8483, 77jca 553 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹:𝑇⟶ℝ ∧ 𝑡𝑇))
85 ffvelrn 6397 . . . . . . . . 9 ((𝐹:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
86 recn 10064 . . . . . . . . 9 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
8881, 87subcld 10430 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((𝑓𝑡) − (𝐹𝑡)) ∈ ℂ)
8988abscld 14219 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ)
904, 37, 473pm3.2i 1259 . . . . . . . . 9 (1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0)
91 redivcl 10782 . . . . . . . . 9 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ)
9290, 91mp1i 13 . . . . . . . 8 (𝜑 → (1 / 4) ∈ ℝ)
9346, 92ifcld 4164 . . . . . . 7 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9493ad2antrr 762 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9546ad2antrr 762 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
96 ltletr 10167 . . . . . 6 (((abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9789, 94, 95, 96syl3anc 1366 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9872, 97mpan2d 710 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9969, 98ralimdaa 2987 . . 3 ((𝜑𝑓𝐴) → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10099reximdva 3046 . 2 (𝜑 → (∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10167, 100mpd 15 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wnf 1748  wcel 2030  wnfc 2780  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948  ifcif 4119   cuni 4468   class class class wbr 4685  cmpt 4762  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  infcinf 8388  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  3c3 11109  4c4 11110  +crp 11870  (,)cioo 12213  abscabs 14018  topGenctg 16145   Cn ccn 21076  Compccmp 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174
This theorem is referenced by:  stowei  40599
  Copyright terms: Public domain W3C validator