Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem10 Structured version   Visualization version   GIF version

Theorem stoweidlem10 39996
Description: Lemma for stoweid 40049. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
stoweidlem10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))

Proof of Theorem stoweidlem10
StepHypRef Expression
1 renegcl 10341 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
213ad2ant1 1081 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -𝐴 ∈ ℝ)
3 simp2 1061 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℕ0)
4 simpr 477 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 1)
5 simpl 473 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
6 1red 10052 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 1 ∈ ℝ)
75, 6lenegd 10603 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → (𝐴 ≤ 1 ↔ -1 ≤ -𝐴))
84, 7mpbid 222 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴)
983adant2 1079 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -1 ≤ -𝐴)
10 bernneq 12985 . . 3 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ -𝐴) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
112, 3, 9, 10syl3anc 1325 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
12 recn 10023 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13123ad2ant1 1081 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝐴 ∈ ℂ)
14 nn0cn 11299 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
15143ad2ant2 1082 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℂ)
16 1cnd 10053 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 1 ∈ ℂ)
17 mulneg1 10463 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝐴 · 𝑁) = -(𝐴 · 𝑁))
1817oveq2d 6663 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
19183adant3 1080 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
20 simp3 1062 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 1 ∈ ℂ)
21 mulcl 10017 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
22213adant3 1080 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
2320, 22negsubd 10395 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + -(𝐴 · 𝑁)) = (1 − (𝐴 · 𝑁)))
24 mulcom 10019 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
2524oveq2d 6663 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
26253adant3 1080 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2719, 23, 263eqtrd 2659 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2813, 15, 16, 27syl3anc 1325 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
29 1cnd 10053 . . . . 5 (𝐴 ∈ ℝ → 1 ∈ ℂ)
3029, 12negsubd 10395 . . . 4 (𝐴 ∈ ℝ → (1 + -𝐴) = (1 − 𝐴))
3130oveq1d 6662 . . 3 (𝐴 ∈ ℝ → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
32313ad2ant1 1081 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
3311, 28, 323brtr3d 4682 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989   class class class wbr 4651  (class class class)co 6647  cc 9931  cr 9932  1c1 9934   + caddc 9936   · cmul 9938  cle 10072  cmin 10263  -cneg 10264  0cn0 11289  cexp 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-uz 11685  df-seq 12797  df-exp 12856
This theorem is referenced by:  stoweidlem24  40010
  Copyright terms: Public domain W3C validator