Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem13 Structured version   Visualization version   GIF version

Theorem stoweidlem13 39524
Description: Lemma for stoweid 39574. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem13.1 (𝜑𝐸 ∈ ℝ+)
stoweidlem13.2 (𝜑𝑋 ∈ ℝ)
stoweidlem13.3 (𝜑𝑌 ∈ ℝ)
stoweidlem13.4 (𝜑𝑗 ∈ ℝ)
stoweidlem13.5 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
stoweidlem13.6 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
stoweidlem13.7 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
stoweidlem13.8 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
Assertion
Ref Expression
stoweidlem13 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))

Proof of Theorem stoweidlem13
StepHypRef Expression
1 stoweidlem13.3 . . . 4 (𝜑𝑌 ∈ ℝ)
2 stoweidlem13.2 . . . 4 (𝜑𝑋 ∈ ℝ)
31, 2resubcld 10403 . . 3 (𝜑 → (𝑌𝑋) ∈ ℝ)
4 2re 11035 . . . 4 2 ∈ ℝ
5 stoweidlem13.1 . . . . 5 (𝜑𝐸 ∈ ℝ+)
65rpred 11816 . . . 4 (𝜑𝐸 ∈ ℝ)
7 remulcl 9966 . . . 4 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (2 · 𝐸) ∈ ℝ)
84, 6, 7sylancr 694 . . 3 (𝜑 → (2 · 𝐸) ∈ ℝ)
91recnd 10013 . . . . 5 (𝜑𝑌 ∈ ℂ)
102recnd 10013 . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10negsubdi2d 10353 . . . 4 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
122, 1resubcld 10403 . . . . 5 (𝜑 → (𝑋𝑌) ∈ ℝ)
13 1red 10000 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1413, 6remulcld 10015 . . . . 5 (𝜑 → (1 · 𝐸) ∈ ℝ)
15 stoweidlem13.4 . . . . . . . . . . 11 (𝜑𝑗 ∈ ℝ)
16 3re 11039 . . . . . . . . . . . . 13 3 ∈ ℝ
17 3ne0 11060 . . . . . . . . . . . . 13 3 ≠ 0
1816, 17rereccli 10735 . . . . . . . . . . . 12 (1 / 3) ∈ ℝ
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 3) ∈ ℝ)
2015, 19resubcld 10403 . . . . . . . . . 10 (𝜑 → (𝑗 − (1 / 3)) ∈ ℝ)
2120, 6remulcld 10015 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
2221, 1resubcld 10403 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) ∈ ℝ)
23 4re 11042 . . . . . . . . . . . . 13 4 ∈ ℝ
2423, 16, 173pm3.2i 1237 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0)
25 redivcl 10689 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (4 / 3) ∈ ℝ)
2624, 25mp1i 13 . . . . . . . . . . 11 (𝜑 → (4 / 3) ∈ ℝ)
2715, 26resubcld 10403 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) ∈ ℝ)
2827, 6remulcld 10015 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
2921, 28resubcld 10403 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) ∈ ℝ)
30 stoweidlem13.6 . . . . . . . . 9 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
312, 21, 1, 30lesub1dd 10588 . . . . . . . 8 (𝜑 → (𝑋𝑌) ≤ (((𝑗 − (1 / 3)) · 𝐸) − 𝑌))
32 stoweidlem13.7 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
3328, 1, 21, 32ltsub2dd 10585 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3412, 22, 29, 31, 33lelttrd 10140 . . . . . . 7 (𝜑 → (𝑋𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3515recnd 10013 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
3619recnd 10013 . . . . . . . . . 10 (𝜑 → (1 / 3) ∈ ℂ)
3735, 36subcld 10337 . . . . . . . . 9 (𝜑 → (𝑗 − (1 / 3)) ∈ ℂ)
3826recnd 10013 . . . . . . . . . 10 (𝜑 → (4 / 3) ∈ ℂ)
3935, 38subcld 10337 . . . . . . . . 9 (𝜑 → (𝑗 − (4 / 3)) ∈ ℂ)
406recnd 10013 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
4137, 39, 40subdird 10432 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
4235, 36, 35, 38sub4d 10386 . . . . . . . . . 10 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) − ((1 / 3) − (4 / 3))))
4335, 35subcld 10337 . . . . . . . . . . 11 (𝜑 → (𝑗𝑗) ∈ ℂ)
4443, 36, 38subsub2d 10366 . . . . . . . . . 10 (𝜑 → ((𝑗𝑗) − ((1 / 3) − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4542, 44eqtrd 2660 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4645oveq1d 6620 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4741, 46eqtr3d 2662 . . . . . . 7 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4834, 47breqtrd 4644 . . . . . 6 (𝜑 → (𝑋𝑌) < (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4935subidd 10325 . . . . . . . . 9 (𝜑 → (𝑗𝑗) = 0)
5049oveq1d 6620 . . . . . . . 8 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = (0 + ((4 / 3) − (1 / 3))))
51 4cn 11043 . . . . . . . . . . . 12 4 ∈ ℂ
52 3cn 11040 . . . . . . . . . . . 12 3 ∈ ℂ
5351, 52, 17divcli 10712 . . . . . . . . . . 11 (4 / 3) ∈ ℂ
54 ax-1cn 9939 . . . . . . . . . . . 12 1 ∈ ℂ
5554, 52, 17divcli 10712 . . . . . . . . . . 11 (1 / 3) ∈ ℂ
56 1div1e1 10662 . . . . . . . . . . . . . 14 (1 / 1) = 1
5756oveq2i 6616 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = ((1 / 3) + 1)
58 ax-1ne0 9950 . . . . . . . . . . . . . 14 1 ≠ 0
5954, 52, 54, 54, 17, 58divadddivi 10732 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = (((1 · 1) + (1 · 3)) / (3 · 1))
6057, 59eqtr3i 2650 . . . . . . . . . . . 12 ((1 / 3) + 1) = (((1 · 1) + (1 · 3)) / (3 · 1))
6152, 54addcomi 10172 . . . . . . . . . . . . . 14 (3 + 1) = (1 + 3)
62 df-4 11026 . . . . . . . . . . . . . 14 4 = (3 + 1)
63 1t1e1 11120 . . . . . . . . . . . . . . 15 (1 · 1) = 1
6452mulid2i 9988 . . . . . . . . . . . . . . 15 (1 · 3) = 3
6563, 64oveq12i 6617 . . . . . . . . . . . . . 14 ((1 · 1) + (1 · 3)) = (1 + 3)
6661, 62, 653eqtr4ri 2659 . . . . . . . . . . . . 13 ((1 · 1) + (1 · 3)) = 4
6766oveq1i 6615 . . . . . . . . . . . 12 (((1 · 1) + (1 · 3)) / (3 · 1)) = (4 / (3 · 1))
68 3t1e3 11123 . . . . . . . . . . . . 13 (3 · 1) = 3
6968oveq2i 6616 . . . . . . . . . . . 12 (4 / (3 · 1)) = (4 / 3)
7060, 67, 693eqtri 2652 . . . . . . . . . . 11 ((1 / 3) + 1) = (4 / 3)
7153, 55, 54, 70subaddrii 10315 . . . . . . . . . 10 ((4 / 3) − (1 / 3)) = 1
7271oveq2i 6616 . . . . . . . . 9 (0 + ((4 / 3) − (1 / 3))) = (0 + 1)
73 1e0p1 11496 . . . . . . . . 9 1 = (0 + 1)
7472, 73eqtr4i 2651 . . . . . . . 8 (0 + ((4 / 3) − (1 / 3))) = 1
7550, 74syl6eq 2676 . . . . . . 7 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = 1)
7675oveq1d 6620 . . . . . 6 (𝜑 → (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸) = (1 · 𝐸))
7748, 76breqtrd 4644 . . . . 5 (𝜑 → (𝑋𝑌) < (1 · 𝐸))
78 1lt2 11139 . . . . . 6 1 < 2
794a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
8013, 79, 5ltmul1d 11857 . . . . . 6 (𝜑 → (1 < 2 ↔ (1 · 𝐸) < (2 · 𝐸)))
8178, 80mpbii 223 . . . . 5 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
8212, 14, 8, 77, 81lttrd 10143 . . . 4 (𝜑 → (𝑋𝑌) < (2 · 𝐸))
8311, 82eqbrtrd 4640 . . 3 (𝜑 → -(𝑌𝑋) < (2 · 𝐸))
843, 8, 83ltnegcon1d 10552 . 2 (𝜑 → -(2 · 𝐸) < (𝑌𝑋))
85 5re 11044 . . . . . 6 5 ∈ ℝ
8685a1i 11 . . . . 5 (𝜑 → 5 ∈ ℝ)
8716a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
8817a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
8986, 87, 88redivcld 10798 . . . 4 (𝜑 → (5 / 3) ∈ ℝ)
9089, 6remulcld 10015 . . 3 (𝜑 → ((5 / 3) · 𝐸) ∈ ℝ)
912renegcld 10402 . . . . 5 (𝜑 → -𝑋 ∈ ℝ)
9215, 19readdcld 10014 . . . . . 6 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
9392, 6remulcld 10015 . . . . 5 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
9428renegcld 10402 . . . . 5 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
95 stoweidlem13.8 . . . . 5 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
96 stoweidlem13.5 . . . . . 6 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
9728, 2ltnegd 10550 . . . . . 6 (𝜑 → (((𝑗 − (4 / 3)) · 𝐸) < 𝑋 ↔ -𝑋 < -((𝑗 − (4 / 3)) · 𝐸)))
9896, 97mpbid 222 . . . . 5 (𝜑 → -𝑋 < -((𝑗 − (4 / 3)) · 𝐸))
991, 91, 93, 94, 95, 98lt2addd 10595 . . . 4 (𝜑 → (𝑌 + -𝑋) < (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)))
1009, 10negsubd 10343 . . . 4 (𝜑 → (𝑌 + -𝑋) = (𝑌𝑋))
10135, 36, 40adddird 10010 . . . . . 6 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑗 · 𝐸) + ((1 / 3) · 𝐸)))
10235, 38negsubd 10343 . . . . . . . . . . 11 (𝜑 → (𝑗 + -(4 / 3)) = (𝑗 − (4 / 3)))
103102eqcomd 2632 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) = (𝑗 + -(4 / 3)))
104103oveq1d 6620 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 + -(4 / 3)) · 𝐸))
10538negcld 10324 . . . . . . . . . 10 (𝜑 → -(4 / 3) ∈ ℂ)
10635, 105, 40adddird 10010 . . . . . . . . 9 (𝜑 → ((𝑗 + -(4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)))
10738, 40mulneg1d 10428 . . . . . . . . . 10 (𝜑 → (-(4 / 3) · 𝐸) = -((4 / 3) · 𝐸))
108107oveq2d 6621 . . . . . . . . 9 (𝜑 → ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
109104, 106, 1083eqtrd 2664 . . . . . . . 8 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
110109negeqd 10220 . . . . . . 7 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
11135, 40mulcld 10005 . . . . . . . 8 (𝜑 → (𝑗 · 𝐸) ∈ ℂ)
11238, 40mulcld 10005 . . . . . . . . 9 (𝜑 → ((4 / 3) · 𝐸) ∈ ℂ)
113112negcld 10324 . . . . . . . 8 (𝜑 → -((4 / 3) · 𝐸) ∈ ℂ)
114111, 113negdid 10350 . . . . . . 7 (𝜑 → -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)))
115112negnegd 10328 . . . . . . . 8 (𝜑 → --((4 / 3) · 𝐸) = ((4 / 3) · 𝐸))
116115oveq2d 6621 . . . . . . 7 (𝜑 → (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
117110, 114, 1163eqtrd 2664 . . . . . 6 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
118101, 117oveq12d 6623 . . . . 5 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))))
11936, 40mulcld 10005 . . . . . . . 8 (𝜑 → ((1 / 3) · 𝐸) ∈ ℂ)
120111negcld 10324 . . . . . . . 8 (𝜑 → -(𝑗 · 𝐸) ∈ ℂ)
121111, 119, 120, 112add4d 10209 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
122111negidd 10327 . . . . . . . 8 (𝜑 → ((𝑗 · 𝐸) + -(𝑗 · 𝐸)) = 0)
123122oveq1d 6620 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
124119, 112addcld 10004 . . . . . . . 8 (𝜑 → (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)) ∈ ℂ)
125124addid2d 10182 . . . . . . 7 (𝜑 → (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
126121, 123, 1253eqtrd 2664 . . . . . 6 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12736, 38, 40adddird 10010 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12887recnd 10013 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
12936, 38addcld 10004 . . . . . . . 8 (𝜑 → ((1 / 3) + (4 / 3)) ∈ ℂ)
130128, 36, 38adddid 10009 . . . . . . . . 9 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = ((3 · (1 / 3)) + (3 · (4 / 3))))
13154, 51addcomi 10172 . . . . . . . . . 10 (1 + 4) = (4 + 1)
13254, 52, 17divcan2i 10713 . . . . . . . . . . 11 (3 · (1 / 3)) = 1
13351, 52, 17divcan2i 10713 . . . . . . . . . . 11 (3 · (4 / 3)) = 4
134132, 133oveq12i 6617 . . . . . . . . . 10 ((3 · (1 / 3)) + (3 · (4 / 3))) = (1 + 4)
135 df-5 11027 . . . . . . . . . 10 5 = (4 + 1)
136131, 134, 1353eqtr4i 2658 . . . . . . . . 9 ((3 · (1 / 3)) + (3 · (4 / 3))) = 5
137130, 136syl6eq 2676 . . . . . . . 8 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = 5)
138128, 129, 88, 137mvllmuld 10802 . . . . . . 7 (𝜑 → ((1 / 3) + (4 / 3)) = (5 / 3))
139138oveq1d 6620 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = ((5 / 3) · 𝐸))
140126, 127, 1393eqtr2d 2666 . . . . 5 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = ((5 / 3) · 𝐸))
141118, 140eqtrd 2660 . . . 4 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = ((5 / 3) · 𝐸))
14299, 100, 1413brtr3d 4649 . . 3 (𝜑 → (𝑌𝑋) < ((5 / 3) · 𝐸))
143 5lt6 11149 . . . . . . 7 5 < 6
144 3t2e6 11124 . . . . . . 7 (3 · 2) = 6
145143, 144breqtrri 4645 . . . . . 6 5 < (3 · 2)
146 3pos 11059 . . . . . . . 8 0 < 3
14716, 146pm3.2i 471 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
148 ltdivmul 10843 . . . . . . 7 ((5 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((5 / 3) < 2 ↔ 5 < (3 · 2)))
14985, 4, 147, 148mp3an 1421 . . . . . 6 ((5 / 3) < 2 ↔ 5 < (3 · 2))
150145, 149mpbir 221 . . . . 5 (5 / 3) < 2
151150a1i 11 . . . 4 (𝜑 → (5 / 3) < 2)
15289, 79, 5, 151ltmul1dd 11871 . . 3 (𝜑 → ((5 / 3) · 𝐸) < (2 · 𝐸))
1533, 90, 8, 142, 152lttrd 10143 . 2 (𝜑 → (𝑌𝑋) < (2 · 𝐸))
1543, 8absltd 14097 . 2 (𝜑 → ((abs‘(𝑌𝑋)) < (2 · 𝐸) ↔ (-(2 · 𝐸) < (𝑌𝑋) ∧ (𝑌𝑋) < (2 · 𝐸))))
15584, 153, 154mpbir2and 956 1 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1992  wne 2796   class class class wbr 4618  cfv 5850  (class class class)co 6605  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  cle 10020  cmin 10211  -cneg 10212   / cdiv 10629  2c2 11015  3c3 11016  4c4 11017  5c5 11018  6c6 11019  +crp 11776  abscabs 13903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905
This theorem is referenced by:  stoweidlem61  39572
  Copyright terms: Public domain W3C validator